The horizontal component of the force is approximately
and the vertical component of the force is
.
To find the horizontal and vertical components of the force, you can use trigonometric functions since the force is exerted at an angle to the ground.
The force exerted by the man is 34 pounds at an angle of 30 degrees to the ground.
The horizontal component of the force can be found using the cosine function:
![\[ \text{Horizontal component} = \text{Force} * \cos(\text{angle}) \]](https://img.qammunity.org/2024/formulas/physics/high-school/y5rc71nhs1xnhyv6d9067iq3ss9lp498t7.png)
![\[ \text{Horizontal component} = 34 \, \text{lb} * \cos(30^\circ) \]](https://img.qammunity.org/2024/formulas/physics/high-school/lpzad9ebtjfha7v30rar3vz4dudeknulgn.png)
Cosine of 30 degrees is
.
So,
![\[ \text{Horizontal component} = 34 \, \text{lb} * (√(3))/(2) \]](https://img.qammunity.org/2024/formulas/physics/high-school/k5oh2co184dwoxbzf76lat72le9qlcsvsq.png)
![\[ \text{Horizontal component} \approx 29.448 \, \text{lb} \]](https://img.qammunity.org/2024/formulas/physics/high-school/efpmmus98y5j3nofhjlx2ndp0nnloouozx.png)
The vertical component of the force can be found using the sine function:
![\[ \text{Vertical component} = \text{Force} * \sin(\text{angle}) \]](https://img.qammunity.org/2024/formulas/physics/high-school/5lghapxjhjkt1izdnxlr3qvd7hm2zmiwrq.png)
![\[ \text{Vertical component} = 34 \, \text{lb} * \sin(30^\circ) \]](https://img.qammunity.org/2024/formulas/physics/high-school/hkwtqbqggrw8e0i089vmpjmb20eywdo2jo.png)
Sine of 30 degrees is
.
So,
![\[ \text{Vertical component} = 34 \, \text{lb} * (1)/(2) \]](https://img.qammunity.org/2024/formulas/physics/high-school/c35a5b3c016ij7ozdbo55cod7sfpvitraj.png)
![\[ \text{Vertical component} = 17 \, \text{lb} \]](https://img.qammunity.org/2024/formulas/physics/high-school/cchh37d1izrs048j3sxnq34i2mrtnhm4no.png)