Interpolation polynomial for
.To compute the interpolation polynomial for f(x) = -
using Lagrange Interpolation, we need to find the polynomial that passes through the given points (x0, f(x0)), (x1, f(x1)), and (x2, f(x2)).
Given x0 = -α, x1 = 0, and x2 = α, we can substitute these values into the Lagrange Interpolation formula:
p(x) = f(x0) * L0(x) + f(x1) * L1(x) + f(x2) * L2(x)
where L0(x), L1(x), and L2(x) are the Lagrange basis polynomials.
L0(x) = (x - x1) * (x - x2) / (x0 - x1) * (x0 - x2)
= (x - 0) * (x - α) / (-α - 0) * (-α - α)
=

L1(x) = (x - x0) * (x - x2) / (x1 - x0) * (x1 - x2)
= (x - (-α)) * (x - α) / (0 - (-α)) * (0 - α)
=

L2(x) = (x - x0) * (x - x1) / (x2 - x0) * (x2 - x1)
= (x - (-α)) * (x - 0) / (α - (-α)) * (α - 0)
=

Substituting these values into the interpolation polynomial formula, we have:
p(x) = f(x0) * L0(x) + f(x1) * L1(x) + f(x2) * L2(x)
=

=

=

=

=

=

=

Therefore, the interpolation polynomial for
