Answer:
Sure! Here are three examples of NFAs, along with their machine definitions, graph representations, table representations, and the languages they accept:
### Example 1
#### NFA Machine Definition
- Q = {q0, q1, q2}
- Σ = {0, 1}
- δ = a transition function that maps (Q x Σ) to P(Q)
- δ(q0, 0) = {q0, q1}
- δ(q0, 1) = {q0}
- δ(q1, 1) = {q2}
- δ(q2, 0) = {q2}
- δ(q2, 1) = {q2}
- q0 = the start state
- F = {q2} (the accept state)
#### Graph Representation
```
->(q0)--0-->(q0, q1)
| |
1 1
| |
v v
(q0) (q2)
| |
0 1
| |
v v
(q2)<--1--(q2)
```
#### Table Representation
| | 0 | 1 |
|---|-------------|-------------|
| q0| {q0, q1} | {q0} |
| q1| Ø | {q2} |
| q2| {q2} | {q2} |
#### Language Accepted
This NFA accepts the language of all strings that end in the substring "11". For example, "011", "111", "00111", "0010011", etc.
### Example 2
#### NFA Machine Definition
- Q = {q0, q1, q2}
- Σ = {0, 1}
- δ = a transition function that maps (Q x Σ) to P(Q)
- δ(q0, 0) = {q0}
- δ(q0, 1) = {q0, q1}
- δ(q1, 0) = {q2}
- δ(q1, 1) = {q2}
- δ(q2, 0) = {q2}
- δ(q2, 1) = {q2}
- q0 = the