179k views
4 votes
Please help with this question

Please help with this question-example-1
User Edit
by
8.1k points

1 Answer

1 vote

Answer:


\displaystyle \int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\int\limits^(-1)_(-2) {2xy^2} \, dx } \, dy } \, dz = \boxed{-(392)/(3) }

Explanation:

Evaluate the given triple-integral over the region "B."


\displaystyle \iiint_B 2xy^2 dV\\\\B=\ -2\leq x\leq 0, \ 3\leq y\leq 5, \ -2\leq z\leq -1\\\\\\hrule

Part (a) - Set up the integral.

Setting up the integral we get:


\Longrightarrow \displaystyle \int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\int\limits^(0)_(-2) {2xy^2} \, dx } \, dy } \, dz

Part (b) - Evaluate the integral.

Utilizing the power rule for integration, we can integrate this integral.


\Longrightarrow \displaystyle \int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\int\limits^(0)_(-2) {2xy^2} \, dx } \, dy } \, dz

First, integrating with respect to "x." This means we will treat all other variables as constants.


\Longrightarrow \displaystyle \int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\int\limits^(0)_(-2) {2xy^2} \, dx } \, dy } \, dz\\\\\\\\\Longrightarrow \displaystyle 2y^2\int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\int\limits^(0)_(-2) {x} \, dx } \, dy } \, dz\\\\\\\\\Longrightarrow \displaystyle 2y^2\int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\Big[(1)/(2) x^2 \Big]\limits^(0)_(-2)} \, dy } \, dz\\\\\\\\


\Longrightarrow \displaystyle 2y^2\int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\Big[(1)/(2) (0)^2 - (1)/(2)(-2)^2 \Big]} \, dy } \, dz\\\\\\\\\Longrightarrow \displaystyle 2y^2\int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\Big[(1)/(2) (0) - (1)/(2)(4) \Big]} \, dy } \, dz\\\\\\\\\Longrightarrow \displaystyle 2y^2\int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\Big[0 - 2 \Big]} \, dy } \, dz\\\\\\\\


\Longrightarrow \displaystyle 2y^2\int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\Big[-2 \Big]} \, dy } \, dz\\\\\\\\\Longrightarrow \displaystyle 2 \cdot -2\int\limits^(-1)_(-2) {\int\limits^(5)_(3) {y^2} \, dy } \, dz\\\\\\\\\boxed{\Longrightarrow \displaystyle -4 \int\limits^(-1)_(-2) {\int\limits^(5)_(3) {y^2} \, dy } \, dz}

Next, integrating with respect to the variable "y."


\Longrightarrow \displaystyle -4 \int\limits^(-1)_(-2) {\int\limits^(5)_(3) {y^2} \, dy } \, dz\\\\\\\\\Longrightarrow \displaystyle -4 \int\limits^(-1)_(-2) { {\Big[(1)/(3)y^3\Big]\limits^(5)_(3)} \, } \, dz\\\\\\\\\Longrightarrow \displaystyle -4 \int\limits^(-1)_(-2) { {\Big[(1)/(3)(5)^3-(1)/(3)(3)^3\Big]} \, } \, dz\\\\\\\\\Longrightarrow \displaystyle -4 \int\limits^(-1)_(-2) { {\Big[(1)/(3)(125)-(1)/(3)(27)\Big]} \, } \, dz\\\\\\\\


\Longrightarrow \displaystyle -4 \int\limits^(-1)_(-2) { {\Big[(125)/(3)-9\Big]} \, } \, dz\\\\\\\\\Longrightarrow \displaystyle -4 \int\limits^(-1)_(-2) { {(98)/(3)} \, } \, dz\\\\\\\\\Longrightarrow \displaystyle - 4 \cdot(98)/(3)\int\limits^(-1)_(-2) { {1} \, } \, dz\\\\\\\\\Longrightarrow \boxed{\displaystyle - (392)/(3)\int\limits^(-1)_(-2) { {1} \, } \, dz}

Lastly, integrating with respect to the variable "z." We will utilize the constant rule for integration.


\Longrightarrow \displaystyle - (392)/(3) \int\limits^(-1)_(-2) { {1} \, } \, dz\\\\\\\ \Longrightarrow -(392)/(3) \Big[z\Big]\limits^(-1)_(-2)\\\\\\\\\Longrightarrow -(392)/(3) \Big[-1-(-2)\Big]\\\\\\\\\Longrightarrow -(392)/(3) \Big[-1+2\Big]\\\\\\\\\Longrightarrow -(392)/(3) (1)\\\\\\\\\therefore \boxed{\boxed{-(392)/(3) }}

Thus, the problem is solved.
\hrulefill

Integration rules used:


\boxed{\left\begin{array}{ccc}\text{\underline{Power Rule:}}\\\\\displaystyle \int x^n \ dx = (x^(n+1))/(n+1) \end{array}\right }


\boxed{\left\begin{array}{ccc}\text{\underline{Constant Rule:}}\\\\\displaystyle \int a\ dx = ax\end{array}\right }

User Joe Jankowiak
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories