Answer:

Explanation:
Evaluate the given triple-integral over the region "B."

Part (a) - Set up the integral.
Setting up the integral we get:

Part (b) - Evaluate the integral.
Utilizing the power rule for integration, we can integrate this integral.

First, integrating with respect to "x." This means we will treat all other variables as constants.
![\Longrightarrow \displaystyle \int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\int\limits^(0)_(-2) {2xy^2} \, dx } \, dy } \, dz\\\\\\\\\Longrightarrow \displaystyle 2y^2\int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\int\limits^(0)_(-2) {x} \, dx } \, dy } \, dz\\\\\\\\\Longrightarrow \displaystyle 2y^2\int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\Big[(1)/(2) x^2 \Big]\limits^(0)_(-2)} \, dy } \, dz\\\\\\\\](https://img.qammunity.org/2024/formulas/mathematics/college/g3xfli1awbovggfx8q8wzgurwjqa7fqy9c.png)
![\Longrightarrow \displaystyle 2y^2\int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\Big[(1)/(2) (0)^2 - (1)/(2)(-2)^2 \Big]} \, dy } \, dz\\\\\\\\\Longrightarrow \displaystyle 2y^2\int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\Big[(1)/(2) (0) - (1)/(2)(4) \Big]} \, dy } \, dz\\\\\\\\\Longrightarrow \displaystyle 2y^2\int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\Big[0 - 2 \Big]} \, dy } \, dz\\\\\\\\](https://img.qammunity.org/2024/formulas/mathematics/college/l5v4j21jkwqzvrbfddzl17vnor6fnpho3s.png)
![\Longrightarrow \displaystyle 2y^2\int\limits^(-1)_(-2) {\int\limits^(5)_(3) {\Big[-2 \Big]} \, dy } \, dz\\\\\\\\\Longrightarrow \displaystyle 2 \cdot -2\int\limits^(-1)_(-2) {\int\limits^(5)_(3) {y^2} \, dy } \, dz\\\\\\\\\boxed{\Longrightarrow \displaystyle -4 \int\limits^(-1)_(-2) {\int\limits^(5)_(3) {y^2} \, dy } \, dz}](https://img.qammunity.org/2024/formulas/mathematics/college/e0uhzapzxinb941tufn8t5x99m1jnn6qsf.png)
Next, integrating with respect to the variable "y."
![\Longrightarrow \displaystyle -4 \int\limits^(-1)_(-2) {\int\limits^(5)_(3) {y^2} \, dy } \, dz\\\\\\\\\Longrightarrow \displaystyle -4 \int\limits^(-1)_(-2) { {\Big[(1)/(3)y^3\Big]\limits^(5)_(3)} \, } \, dz\\\\\\\\\Longrightarrow \displaystyle -4 \int\limits^(-1)_(-2) { {\Big[(1)/(3)(5)^3-(1)/(3)(3)^3\Big]} \, } \, dz\\\\\\\\\Longrightarrow \displaystyle -4 \int\limits^(-1)_(-2) { {\Big[(1)/(3)(125)-(1)/(3)(27)\Big]} \, } \, dz\\\\\\\\](https://img.qammunity.org/2024/formulas/mathematics/college/vp6t269i2cmhlxqfo643ut1ax54lggbh9p.png)
![\Longrightarrow \displaystyle -4 \int\limits^(-1)_(-2) { {\Big[(125)/(3)-9\Big]} \, } \, dz\\\\\\\\\Longrightarrow \displaystyle -4 \int\limits^(-1)_(-2) { {(98)/(3)} \, } \, dz\\\\\\\\\Longrightarrow \displaystyle - 4 \cdot(98)/(3)\int\limits^(-1)_(-2) { {1} \, } \, dz\\\\\\\\\Longrightarrow \boxed{\displaystyle - (392)/(3)\int\limits^(-1)_(-2) { {1} \, } \, dz}](https://img.qammunity.org/2024/formulas/mathematics/college/dku63ge262ehkhp7gu4c0ohk8nfm1xxbva.png)
Lastly, integrating with respect to the variable "z." We will utilize the constant rule for integration.
![\Longrightarrow \displaystyle - (392)/(3) \int\limits^(-1)_(-2) { {1} \, } \, dz\\\\\\\ \Longrightarrow -(392)/(3) \Big[z\Big]\limits^(-1)_(-2)\\\\\\\\\Longrightarrow -(392)/(3) \Big[-1-(-2)\Big]\\\\\\\\\Longrightarrow -(392)/(3) \Big[-1+2\Big]\\\\\\\\\Longrightarrow -(392)/(3) (1)\\\\\\\\\therefore \boxed{\boxed{-(392)/(3) }}](https://img.qammunity.org/2024/formulas/mathematics/college/pb4v6wb3jgy2vd83p8x2zc0odylondf1kn.png)
Thus, the problem is solved.

Integration rules used:

