38.5k views
5 votes
Evaluate the line integral \oint_{\mathcal{C}} 4(y-cos (y)) {d} x+4 sin (y) x {~d} y, \] where \mathcal{C} \) is the circle (y-3)^{2}+(x-2)^{2}=9 \) oriented clockwise.

1 Answer

4 votes

Answer:

36π

Explanation:


\mathcal{C}:(y-3)^(2)+(x-2)^(2)=9 \)


\displaystyle \oint P\,dx+Q\,dy =\int_D\biggr((\partial Q)/(\partial x)-(\partial P)/(\partial y)\biggr)\,dA


P=4(y-\cos(y))=4y-4\cos(y)\\(\partial P)/(\partial y)=4+4\sin(y)


Q=4\sin(y)x\\(\partial Q)/(\partial x)=4\sin(y)

Clockwise Orientation


\displaystyle -\int_D(4\sin(y)-(4+4\sin(y))\,dA\\\\=-\int_D-4\,dA\\\\=\int_D4\,dA\\\\=\int_0^(2\pi)\int_0^34r\,dr\,d\theta\\\\=\int_0^(2\pi)18\,d\theta\\\\=18(2\pi)\\\\=36\pi

User Rom Shiri
by
8.4k points