101k views
3 votes
Combine into a single logarithm

Combine into a single logarithm-example-1
User JohnnyRose
by
8.1k points

2 Answers

3 votes

Answer:


\displaystyle =\log\biggr(((x+y)^3(x-y)^2)/(x^2+y^2)\biggr)

Explanation:


\displaystyle 3\log(x+y)+2\log(x-y)-\log(x^2+y^2)\\\\=\log((x+y)^3)+\log((x-y)^2)-\log(x^2+y^2)\\\\=\log\biggr((x+y)^3}{(x-y)^2}\biggr)-\log(x^2+y^2)\\\\=\log\biggr(((x+y)^3(x-y)^2)/(x^2+y^2)\biggr)

User Vladislav Orillo
by
8.0k points
3 votes


\textit{Logarithm of exponentials} \\\\ \log_a\left( x^b \right)\implies b\cdot \log_a(x) \\\\\\ \begin{array}{llll} \textit{logarithm of factors} \\\\ \log_a(xy)\implies \log_a(x)+\log_a(y) \end{array} ~\hspace{4em} \begin{array}{llll} \textit{Logarithm of rationals} \\\\ \log_a\left( (x)/(y)\right)\implies \log_a(x)-\log_a(y) \end{array} \\\\[-0.35em] ~\dotfill


3\log(x+y)+2\log(x-y)-\log(x^2+y^2) \\\\\\ \log[(x+y)^3]+\log[(x-y)^2]-\log(x^2+y^2) \\\\\\ \log[(x+y)^3(x-y)^2]-\log(x^2+y^2)\implies \log\left[ \cfrac{(x+y)^3(x-y)^2}{x^2+y^2} \right]

User Afuous
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories