Answer:
(a) 12
(b) 15,625
Explanation:
Part (a)
Given definite integral:

![\textsf{Apply the exponent rule:} \quad \frac{1}{\sqrt[n]{x}}=x^{-(1)/(n)}](https://img.qammunity.org/2024/formulas/mathematics/high-school/nsxr1e4zhw2qjy8q7l99zjo6thwq7pz1cr.png)

Evaluate the integral using the exponent rule:
![\begin{aligned} \displaystyle \int_(4)^(25) (2)/(√(x)) \;dx&=\displaystyle \int_(4)^(25) 2x^{-(1)/(2)} \;dx\\\\&=\left[\frac{2x^{-(1)/(2)+1}}{-(1)/(2)+1}\right]^(25)_(4)\\\\&=\left[\frac{2x^{(1)/(2)}}{(1)/(2)}\right]^(25)_(4)\\\\&=\left[4x^{(1)/(2)}\right]^(25)_(4)\\\\&=4(25)^{(1)/(2)}-4(4)^{(1)/(2)}\\\\&=4(5)-4(2)\\\\&=20-8\\\\&=12\end{aligned}](https://img.qammunity.org/2024/formulas/mathematics/high-school/vx40gw99251k5y0y07q4v3g707v9c003ah.png)

Part (b)
Given definite integral:

To evaluate the definite integral, use the method of substitution.

Find du/dx using the differentiation exponent rule, and rewrite it so that dx is on its own:

Find the new limits by substituting x = 2 and x = 3 into u = x² - 4:


Rewrite the original integral in terms of u and du:

Evaluate the integral using the exponent rule:
![\begin{aligned}\displaystyle &=\left[(6u^(5+1))/(5+1)\right]^(5)_(0)\\\\&=\left[(6u^(6))/(6)\right]^(5)_(0)\\\\&=\left[\vphantom{\frac12}u^6\right]^(5)_(0)\\\\&=5^6-0^6\\\\&=15625-0\\\\&=15625\end{aligned}](https://img.qammunity.org/2024/formulas/mathematics/high-school/gxdsbmwl6edyuvr9e0awm39xoumfi42nvo.png)

Differentiation and integration rules used:

