Answer:
The side of the square should be 3 cm
Explanation:
Let a square of side x be removed from each corner.
After removing the squares from the corner, the box will have dimensions:
length = 18 - 2x
breadth = 18 - 2x
height = x
The volumbe of a cuboid is :
V = lbh
= (18 - 2x)(18 - 2x)(x)
= (18 - 2x)²(x)
V = (18 - 2x)²(x)
differentiating w.r.t. x,
![(dV)/(dx) = (d)/(dx) [(18 - 2x)^2(x)]\\\\= x (d)/(dx) [(18 - 2x)^2] + (18 - 2x)^2(d)/(dx)(x)\\\\=x[2(18-2x)(-2)] + (18 - 2x)^2\\\\= -4x(18-2x) + (18 - 2x)^2\\\\= (18 - 2x)[-4x + 18-2x]\\\\=(18 - 2x)(18-6x)\\](https://img.qammunity.org/2024/formulas/mathematics/college/y7uqykfgadszb7m7gkhnrqjvuatsviis83.png)

When x = 9,
length = 18 - 2x
= 18 - 2(9)
= 0
The length cannot be 0
∴ x = 9 is not possible
When x = 3,
length = 18 - 2x
= 18 - 2(3)
= 18 - 6
= 12
The length cannot be 0
∴ x = 9 is not possible
Check for maxima:
![(d^2V)/(dx^2) = (d)/(dx) ((dV)/(dx) )\\\\= (d)/(dx) [(18-2x)(18-6x)]\\\\= (18-6x)(d)/(dx) (18-2x)+(18-2x)(d)/(dx) (18-6x)\\\\= (18-6x)(-2)+(18-2x)(-6)](https://img.qammunity.org/2024/formulas/mathematics/college/wam85l4n907vitlhnktwoz96mhznojd08d.png)
When x = 3,
![(d^2V)/(dx^2) = (18-6x)(-2)+(18-2x)(-6)\\\\= -2[18 - 6(3)] -6 [18-2(3)]\\\\= -2(18 - 18) - 6(18-6)\\\\= - 6(12)\\\\= -72 < 0](https://img.qammunity.org/2024/formulas/mathematics/college/5s9mdq21ot9j13urxohpjp3us7zdfgxrgx.png)
∴ x = 3 is a point of maxima.
The volume is maximised when x = 3