To calculate the crystal lattice energy for sodium oxide (Na2O), we can use the Born-Haber cycle, which relates various enthalpies of formation and dissociation to determine the lattice energy.
The Born-Haber cycle for sodium oxide (Na2O) can be represented as follows:
Na(s) + 1/2O2(g) → Na2O(s)
The cycle involves the following steps:
1. Formation of sodium oxide:
Na(s) + 1/2O2(g) → Na2O(s) ΔHfº
2. Dissociation of sodium metal:
Na(s) → Na(g) ΔHsubº
3. Ionization of sodium atoms:
Na(g) → Na+(g) + e- I.E.1
4. Second ionization of sodium:
Na+(g) → Na2+(g) + e- I.E.2
5. Third ionization of sodium:
Na2+(g) → Na3+(g) + e- I.E.3
6. Electron affinity of oxygen (first and second):
1/2O2(g) + e- → O-(g) E.A.1
O-(g) + e- → O2-(g) E.A.2
7. Formation of oxygen gas:
1/2O2(g) → O2(g) ΔHfº
Given enthalpy values (in kJ/mol):
ΔHfº (Na2O) = -424.6 kJ/mol
ΔHsubº (Na) = 105 kJ/mol
I.E.1 (Na) = 495.5 kJ/mol
I.E.2 (Na) = 4562 kJ/mol
I.E.3 (Na) = 6912 kJ/mol
E.A.1 (O) = -133 kJ/mol
E.A.2 (O) = -247 kJ/mol
ΔHfº (O2) = 495 kJ/mol
Step-by-step solution:
1. Calculate the lattice energy using the Born-Haber cycle:
Lattice energy = ΔHfº (Na2O) - ΔHsubº (Na) - I.E.1 (Na) - I.E.2 (Na) - I.E.3 (Na) - E.A.1 (O) - E.A.2 (O) - ΔHfº (O2)
Lattice energy = -424.6 kJ/mol - 105 kJ/mol - 495.5 kJ/mol - 4562 kJ/mol - 6912 kJ/mol - (-133 kJ/mol) - (-247 kJ/mol) - 495 kJ/mol
Now, perform the calculations to determine the crystal lattice energy for sodium oxide.