(a) To find F(s) in fully-factored form, first factor the denominator:
s^3 + 12s^2 + 56s +72 = (s+4)(s+9)(s+18)
Then factor the numerator:
40s + 90= 10(4s + 9)
So the fully-factored form is:
F(s) = 10(4s + 9) / (s+4)(s+9)(s+18)
(b) To find the residues (K-terms) and PFE of F(s), we use the residue command in MATLAB:
Ns = [40 90];
Ds = [1 12 56 72];
[R,P] = residue(Ns,Ds)
The outputs will be:
So the PFE is:
F(s) = 10 + 9/(s+4) - 4/(s+9) + 18/(s+18)
(c) Using the inverse Laplace transform, we find:
f(t) = 10δ(t) + 9e^(-4t) - 4e^(-9t) + 18e^(-18t)
Where δ(t) is the Dirac delta function.