Answer:
30.964 Degrees
Explanation:
The following is one way to perform the calculation. It may not be the best way.
Calculates a, ∠B, and ∠C based on given b, c, and ∠A.
a = √b2 + c2 - 2bc·cos(A) = 23.32381
∠B = arccos(
a2 + c2 - b2
2ac
)
= 1.03038 rad = 59.036° = 59°2'10"
∠C = arccos(
a2 + b2 - c2
2ab
)
= 0.54042 rad = 30.964° = 30°57'50"
Area =
ab·sin(C)
2
= 120
Perimeter p = a + b + c = 55.32381
Semiperimeter s =
a + b +c
2
= 27.6619
Height ha =
2×Area
a
= 10.28992
Height hb =
2×Area
b
= 12
Height hc =
2×Area
c
= 20
Median ma = √(a/2)2 + c2 - ac·cos(B) = 11.6619
Median mb = √(b/2)2 + a2 - ab·cos(C) = 15.6205
Median mc = √(c/2)2 + b2 - bc·cos(A) = 20.88061
Inradius r =
Area
s
= 4.3381
Circumradius R =
a
2sin(A)
= 11.6619
Or in other words use Triangle Generator (First Link)