31.7k views
3 votes
Factor the following

a) 12xy-24x4y2
b) 2xy - 12x5y2 +
8x2y3
c)4xy + 2wy -10x2​​​​​​​ -5wx

User Ydhem
by
8.1k points

1 Answer

6 votes

Answer:

a) Factoring 12xy - 24x^4y^2:

12xy - 24x^4y^2 = 12xy(1 - 2x^3y)

b) Factoring 2xy - 12x^5y^2 + 8x^2y^3:

2xy - 12x^5y^2 + 8x^2y^3 = 2xy(1 - 6x^4y + 4x^2y^2)

c) Factoring 4xy + 2wy - 10x^2 - 5wx:

4xy + 2wy - 10x^2 - 5wx = (2y - 5x)(2x + w)

Therefore, the factored forms are:

a) 12xy(1 - 2x^3y)

b) 2xy(1 - 6x^4y + 4x^2y^2)

c) (2y - 5x)(2x + w)

Explanation:

a) To factor 12xy - 24x^4y^2, we can factor out the greatest common factor (GCF) of the terms, which in this case is 12xy:

12xy - 24x^4y^2 = 12xy(1 - 2x^3y)

b) To factor 2xy - 12x^5y^2 + 8x^2y^3, we can first factor out the GCF of the terms, which is 2xy:

2xy - 12x^5y^2 + 8x^2y^3 = 2xy(1 - 6x^4y + 4x^2y^2)

c) To factor 4xy + 2wy - 10x^2 - 5wx, we can group the terms:

(4xy + 2wy) - (10x^2 + 5wx)

Now, let's factor out the GCF from each group separately:

4xy + 2wy = 2y(2x + w)

10x^2 + 5wx = 5x(2x + w)

Combining the factors, we have:

2y(2x + w) - 5x(2x + w)

Now, we can factor out the common factor (2x + w):

(2x + w)(2y - 5x)

Therefore, the factored form of 4xy + 2wy - 10x^2 - 5wx is (2x + w)(2y - 5x).

User Detmar
by
7.6k points

Related questions