2.0k views
0 votes
22) Simplify: cos(ωt+45°)+cos(ωt+135°)+cos(ωt−90°)

User Ramesh J
by
8.1k points

1 Answer

5 votes

Answer: sin(ωt)(1 - √2)

To simplify the expression cos(ωt+45°) + cos(ωt+135°) + cos(ωt-90°), we can make use of trigonometric identities.

Recall the following trigonometric identity:

cos(A + B) = cos(A)cos(B) - sin(A)sin(B)

Using this identity, we can rewrite the expression as follows:

cos(ωt+45°) + cos(ωt+135°) + cos(ωt-90°)

= cos(ωt)cos(45°) - sin(ωt)sin(45°) + cos(ωt)cos(135°) - sin(ωt)sin(135°) + cos(ωt)cos(-90°) - sin(ωt)sin(-90°)

Now, let's simplify each term individually:

cos(45°) = √2/2

sin(45°) = √2/2

cos(135°) = -√2/2

sin(135°) = √2/2

cos(-90°) = 0

sin(-90°) = -1

Substituting these values back into the expression, we get:

cos(ωt)(√2/2) - sin(ωt)(√2/2) + cos(ωt)(-√2/2) - sin(ωt)(√2/2) + cos(ωt)(0) - sin(ωt)(-1)

Simplifying further:

(cos(ωt)√2/2 - cos(ωt)√2/2) + (-sin(ωt)√2/2 - sin(ωt)√2/2) - sin(ωt)(-1)

= 0 - 2sin(ωt)√2/2 + sin(ωt)

= -√2sin(ωt) + sin(ωt)

= sin(ωt)(1 - √2)

Therefore, the simplified expression is sin(ωt)(1 - √2).

User TonyK
by
8.3k points