7.7k views
2 votes
Solve the given initial value problem. y ′′
+36y=0,y(0)=3,y ′
(0)=−7 y(x)=

User Pad
by
8.1k points

1 Answer

2 votes

Answer:


y(x)=3\cos(6x)-(7)/(6)\sin(6x)

Explanation:

Solve the roots


y''+36y=0\\r^2+36=0\\(r+6i)(r-6i)=0\\r=\pm6i

Because the roots are complex conjugates, then the general solution we'll need to use is
y(x)=e^(\alpha x)[c_1\cos(\beta x)+c_2\sin(\beta x)] where
r=\alpha\pm\beta i.

This makes the general solution
y(x)=e^(0x)[c_1\cos(6x)+c_2\sin(6x)]=c_1\cos(6x)+c_2\sin(6x)

Since
y'(x)=-6c_1\sin(6x)+6c_2\cos(6x), we can plug in our initial conditions into
y(x) and
y'(x) to solve for each constant:


y(x)=c_1\cos(6x)+c_2\sin(6x)\\y(0)=c_1\cos(6\cdot0)+c_2\sin(6\cdot 0)\\3=c_1\cos(0)+c_2\sin(0)\\3=c_1


y'(x)=-6c_1\sin(6x)+6c_2\cos(6x)\\y'(0)=-6c_1\sin(6\cdot0)+6c_2\cos(6\cdot0)\\-7=-6(3)\sin(0)+6c_2\cos(0)\\-7=6c_2\\c_2=-(7)/(6)

Therefore, the solution to the given IVP is
y(x)=3\cos(6x)-(7)/(6)\sin(6x)

User Econner
by
8.3k points