188k views
5 votes
How many fits are generated from the n estimators in the given code snippet?

pargrid_bagging ('n_estimators': [20,50, 100, 200, 250, 300, 350, 400])


gscv_bagging GridSearchCV (estimator-BaggingClassifier(), cv=5,

param_grid-pargrid_bagging,

verbose=1, n_jobs=-1)

gscv_results gscv_bagging.fit(train_X, train_y)

Select the correct option.

A. 5

B. 40

D. 8

C. 35

User Sanity
by
8.1k points

1 Answer

5 votes

Answer and Explanation:

he given code snippet involves the use of GridSearchCV, which performs a grid search over a specified parameter grid to find the best combination of hyperparameters for a given estimator. In this case, the estimator is BaggingClassifier and the parameter grid is defined as 'n_estimators': [20, 50, 100, 200, 250, 300, 350, 400].

The parameter 'n_estimators' represents the number of base estimators (individual models) that will be used in the BaggingClassifier. In the given code snippet, there are 8 values specified for 'n_estimators' in the parameter grid.

When the GridSearchCV is executed with the parameter grid, it will perform a cross-validation using each combination of hyperparameters. Since there is only one hyperparameter ('n_estimators') and 8 values specified, the GridSearchCV will generate fits for each combination of 'n_estimators' and the other default hyperparameters of the BaggingClassifier.

Therefore, the number of fits generated from the n_estimators in the given code snippet is 8.

The correct option is D. 8.

User Nicholas Mancuso
by
8.3k points