Answer and Step-by-step explanation:
To prove that the conclusion ∃xH(x) follows from the given premises, we will use logical equivalence and inference rules.
1. Premise: ∀x(G(x)→F(x)) → ∃x(J(x)∧H(x))
Inference Rule: Implication Introduction
2. Premise: ∀x(G(x)→H(x))∧∀x(H(x)→F(x))
Inference Rule: Conjunction Elimination
3. From premise 2, we have: ∀x(G(x)→H(x)) and ∀x(H(x)→F(x))
Inference Rule: Conjunction Elimination
4. From premise 3, we have: ∀x(G(x)→H(x))
Inference Rule: Universal Instantiation
5. From premises 1 and 4, we have: ∃x(J(x)∧H(x))
Inference Rule: Modus Ponens
6. From ∃x(J(x)∧H(x)), we can infer ∃xH(x) by existential instantiation.
Inference Rule: Existential Instantiation
Therefore, we have proven that the conclusion ∃xH(x) follows from the given premises using the inference rules of Implication Introduction, Conjunction Elimination, Universal Instantiation, Modus Ponens, and Existential Instantiation.