71.9k views
5 votes
Find the derivative of g(x)=\frac{5 e^{x}+9}{6 x^{3}+2 x^{5}} -45 x^{2}-15 x e^{x}-5 x^{3} e^{x}+25 x^{2} e^{x}+81+45 e^{x} g'(x)=

1 Answer

5 votes

Answer and Step-by-step explanation:

The derivative of the function g(x) = (5e^x + 9)/(6x^3 + 2x^5) - 45x^2 - 15xe^x - 5x^3e^x + 25x^2e^x + 81 + 45e^x can be found using the quotient rule, the power rule, and the chain rule. The derivative is:

g'(x) = (5e^x(6x^3 + 2x^5) - (5e^x + 9)(18x^2 + 10x^4))/(6x^3 + 2x^5)^2 - 90x - 15e^x - 15xe^x - 15x^2e^x - 15x^3e^x + 50xe^x + 45e^x

Simplifying this expression, we get:

g'(x) = (-20e^(2x)x^4 - 10e^(2x)x^3 - 90e^(2)x - 90e^(2)x - 90e^(2)x + 50xe^(2)x + 45e^(2)x)/(6x^3 + 2x^5)^2 -90 x-15 e^{(2)x}-15 x e^{(2)x}-15 x^{(2)} e^{(2)x}-15 x^{(3)} e^{(2)x}+50 x e^{(2)x}+45 e^{(2)x}

User Luntegg
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories