184k views
1 vote
3. Use Cramer's rule to solve the following equation systems:

(a) 8x1 - x₂= 16

2x2 + 5x3 = 5
+ 3x3 = 7



(c) 4x+3y-2z=1
x + 2y=6
3x+z=4


(b)-x1 + 3x2 + 2x3 = 24
X₁+ x3 = 6
5x2-x3 = 8

(d) -x+y+z=a
x-y+z=b
x+y-z = C

1 Answer

6 votes

First, write the coefficient matrix A and the constant vector b:

A=​800​−120​053​​,b=​1657​​

Then, calculate the determinant of A, denoted by |A|:

∣A∣=​800​−120​053​​=(8)(2)(3)−(0)(−1)(5)−(0)(0)(−1)=48

Next, replace the first column of A with b and calculate the determinant, denoted by |A₁|:

A1​=​1657​−120​053​​,∣A1​∣=​1657​−120​053​​=(16)(2)(3)−(5)(−1)(0)−(7)(−1)(5)=96

Similarly, replace the second and third columns of A with b and calculate the determinants, denoted by |A₂| and |A₃|:

A2​=​800​1657​053​​,∣A2​∣=​800​1657​053​​=(8)(5)(3)−(16)(0)(3)−(0)(7)(0)=120

A3​=​800​−120​1657​​,∣A3​∣=​800​−120​1657​​=(8)(2)(7)−(16)(−1)(0)−(−1)(5)(0)=112

Finally, use Cramer’s rule to find the values of x₁, x₂ and x₃:

x1​=∣A∣∣A1​∣​=4896​=2

x2​=∣A∣∣A2​∣​=48120​=2.5

x3​=∣A∣∣A3​∣​=48112​=2.333...

Therefore, the solution is x₁=2, x₂=2.5 and x₃=2.333…

(b)-x1 + 3x2 + 2x3 =24

X₁+ x3=6

5x2-x3=8

First, write the coefficient matrix A and the constant vector b:

A=​−110​305​21−1​​,b=​2468​​

Then, calculate the determinant of A, denoted by |A|:

∣A∣=​−110​305​21−1​​=(−1)(−1+10)−(3)(−1+0)+(2)(−5+0)=9+3−10=2

Next, replace the first column of A with b and calculate the determinant, denoted by |A₁|:

A1​=​2468​305​21−1​​,∣A1​∣=​2468​305​21−1​​=(24)(−1+5)−(3)(−6+8)+(2)(−30+40)=96−6+20=110

Similarly, replace the second and third columns of A with b and calculate the determinants, denoted by |A₂| and |A₃|:

A2​=​−110​2468​21−1​​,∣A2​∣=​−110​2468​21−1​​=(−1)(−6+8)−(24)(−1+0)+(2)(−8+0)=−2+24−16=6

A3​=​−110​305​2468​​,∣A3​∣=​−110​305​2468​​=(−1)(0+30)−(3)(−8+0)+(24)(−5+0)=−30+24−120=−126

Finally, use Cramer’s rule to find the values of x₁, x₂ and x₃:

x1​=∣A∣∣A1​∣​=2110​=55

x2​=∣A∣∣A2​∣​=26​=3

x3​=∣A∣∣A3​∣​=2−126​=−63

Therefore, the solution is x₁=55, x₂=3 and x₃=-63.

© 4x+3y-2z=1

x + 2y=6

3x+z=4

First, write the coefficient matrix A and the constant vector b:

A=​413​320​−201​​,b=​164​​

Then, calculate the determinant of A, denoted by |A|:

∣A∣=​413​320​−201​​=(4)(2+0)−(3)(0+0)+(−2)(0−6)=8+12=20

Next, replace the first column of A with b and calculate the determinant, denoted by |A₁|:

A1​=​164​320​−201​​,∣A1​∣=​164​320​−201​​=(1)(2+0)−(3)(0+0)+(−2)(0−24)=2+48=50

Similarly, replace the second and third columns of A with b and calculate the determinants, denoted by |A₂| and |A₃|:

A2​= :

A2​=​413​164​−201​​,∣A2​∣=​413​164​−201​​=(4)(6+0)−(1)(0+0)+(−2)(−12+4)=24+16=40

A3​=​413​320​164​​,∣A3​∣=​413​320​164​​=(4)(8+0)−(3)(4+18)+(1)(0−12)=32−66−12=−46

Finally, use Cramer’s rule to find the values of x, y and z:

x=∣A∣∣A1​∣​=2050​=2.5

y=∣A∣∣A2​∣​=2040​=2

z=∣A∣∣A3​∣​=20−46​=−2.3

Therefore, the solution is x=2.5, y=2 and z=-2.3.

(d) -x+y+z=a

x-y+z=b

x+y-z = C

First, write the coefficient matrix A and the constant vector b:

A=​−111​1−11​11−1​​,b=​abc​​

Then, calculate the determinant of A, denoted by |A|:

∣A∣=​−111​1−11​11−1​​=(−1)(−2+1)−(1)(−2+1)+(1)(−2+1)=−3+3+3=3

Next, replace the first column of A with b and calculate the determinant, denoted by |A₁|:

A1​=

$$A_2=\begin{bmatrix}4&1&-2\\1&6&0\\3&4&1\end{bmatrix}, |A_2|=\begin{vmatrix}4&1&-2\\1&6&0\\3&4&1\end{vmatrix}=(4)(6+0)-(1)(0+0)+(-2)(-12+4)=24+16=40$$

$$A_3=\begin{bmatrix}4&3&1\\1&2&6\\3&0&4\end{bmatrix}, |A_3|=\begin{vmatrix}4&3&1\\1&2&6\\3&0&4\end{vmatrix}=(4)(8+0)-(3)(4+18)+(1)(0-12)=32-66-12=-46$$

Finally, use Cramer's rule to find the values of x, y and z:

$$x=\fracA=\frac{50}{20}=2.5$$

$$y=\fracA_2A=\frac{40}{20}=2$$

$$z=\frac=\frac{-46}{20}=-2.3$$

Therefore, the solution is x=2.5, y=2 and z=-2.3.

(d) -x+y+z=a

x-y+z=b

x+y-z = C

First, write the coefficient matrix A and the constant vector b:

$$A=\begin{bmatrix}-1&1&1\\1&-1&1\\1&1&-1\end{bmatrix}, b=\begin{bmatrix}a\\b\\c\end{bmatrix}$$

Then, calculate the determinant of A, denoted by |A|:

$$|A|=\begin{vmatrix}-1&1&1\\1&-1&1\\1&1&-1\end{vmatrix}=(-1)(-2+1)-(1)(-2+1)+(1)(-2+1)=-3+3+3=3$$

Next, replace the first column of A with b and calculate the determinant, denoted by |A₁|:

$$A_1=\begin{bmatrix}a&1&1\\b&-1

User Displacedtexan
by
8.3k points