137k views
2 votes
Use the converse of the Pythagorean theorem to decide if the triangles are right, acute or obtuse. Then classify them.

(show work) pls help!!!!!! i’m confused

Use the converse of the Pythagorean theorem to decide if the triangles are right, acute-example-1

1 Answer

6 votes

Answer:


\mathrm{a\ right\ triangle}

Explanation:


\mathrm{The\ converse\ of\ pythagoras\ theorem\ states\ that\ if\ }c^2=a^2+b^2\ \mathrm{then\ it\ is}\\\mathrm{a\ right\ angled\ triangle.\ We\ can\ therefore\ use\ the\ converse\ to\ check\ if\ a}\\\mathrm{triangle\ is\ right\ angled\ or\ not.}\\\mathrm{Here\ in\ the\ question\ we\ are\ given\ a\ triangle\ with\ 3\ sides.\ Let's\ take\ the }\\\mathrm{longest\ one\ has\ hypotenuse.\ So,\ let\ c=√(50),\ a=5\ and\ b=5.}\\


\mathrm{Finally,\ we\ want\ to\ test\ whether\ the\ given\ triangle\ is\ right\ angled\ or\ not\ }\\\mathrm{i.e.\ is\ }c^2=a^2+b^2?\\c^2=√(50)^2=50.\\a^2+b^2=5^2+5^2=25+25=50\\\mathrm{Here,\ the\ pythagoras\ theorem\ }c^2=a^2+b^2\ \mathrm{is\ satisfied\ so\ the\ triangle\ is}\\\mathrm{right\ angled\ triangle.}

I hope this clarifies your doubt!

User Sebastian Siemens
by
9.0k points