![\[ \]\[ B = \frac{(4\pi * 10^(-7) \, \text{T m/A}) \cdot i}{2\pi \cdot r} \]](https://img.qammunity.org/2024/formulas/physics/high-school/gycinga0g2at27u5zo1cdxqy6ci4v4m1wx.png)
![\[ \]\[ \Phi = \left(\frac{(4\pi * 10^(-7) \, \text{T m/A}) \cdot i}{2\pi \cdot r}\right) \cdot (0.12 \, \text{m} \cdot 0.24 \, \text{m}) \]](https://img.qammunity.org/2024/formulas/physics/high-school/ygakhhjq7qghvkysx8p9b3mt6q1ccihn43.png)
![\[ \]\[ \text{Total Flux} = \int_(0)^{0.36 \, \text{m}} \left(\frac{(4\pi * 10^(-7) \, \text{T m/A}) \cdot i}{2\pi \cdot r}\right) \cdot (0.12 \, \text{m} \, dx) \]](https://img.qammunity.org/2024/formulas/physics/high-school/2if2ihsi1qkid8306i4hiwmccwmlebi20z.png)
![\[ \]\[ \varepsilon = -(d)/(dt) \left( \int_(0)^{0.36 \, \text{m}} \left(\frac{(4\pi * 10^(-7) \, \text{T m/A}) \cdot i}{2\pi \cdot r}\right) \cdot (0.12 \, \text{m} \, dx) \right) \]](https://img.qammunity.org/2024/formulas/physics/high-school/iicf1vh4nlc1p9d7btghxhqhol0efncrcy.png)
**(a) Magnetic Field
:
![\[ B = (\mu_0 \cdot i)/(2\pi \cdot r) \]](https://img.qammunity.org/2024/formulas/physics/high-school/w8o0c8wi96jseb59fgkts7j18d37lm13if.png)
**(b) Magnetic Flux
through the Narrow Strip:**
![\[ \Phi = B \cdot A = B \cdot (a \cdot L) \]](https://img.qammunity.org/2024/formulas/physics/high-school/rhs90r841x82l0gyrxdiik3vxy12xn4so8.png)
**(c) Total Flux through the Loop:**
![\[ \text{Total Flux} = \int_(0)^(b) B \cdot (a \, dx) \]\[ \text{Total Flux} = \int_(0)^(b) \left((\mu_0 \cdot i)/(2\pi \cdot r)\right) \cdot (a \, dx) \]](https://img.qammunity.org/2024/formulas/physics/high-school/mk11kipuabtykhux4xaprlwwoems9uzogd.png)
**(d) Induced EMF
in the Loop:**
![\[ \varepsilon = -(d)/(dt) \left( \int_(0)^(b) B \cdot (a \, dx) \right) \]](https://img.qammunity.org/2024/formulas/physics/high-school/jncdjrn6d9gntdywzth6ilduk6adld4jfk.png)
Now, substitute the given values:

**(a) Magnetic Field
:**
![\[ B = (\mu_0 \cdot i)/(2\pi \cdot r) \]\[ B = \frac{(4\pi * 10^(-7) \, \text{T m/A}) \cdot i}{2\pi \cdot r} \]](https://img.qammunity.org/2024/formulas/physics/high-school/u0hdwor1wls34eo3x3gxspffsco3ibycbw.png)
**(b) Magnetic Flux
through the Narrow Strip:**
![\[ \Phi = B \cdot (a \cdot L) \]\[ \Phi = \left(\frac{(4\pi * 10^(-7) \, \text{T m/A}) \cdot i}{2\pi \cdot r}\right) \cdot (0.12 \, \text{m} \cdot 0.24 \, \text{m}) \]](https://img.qammunity.org/2024/formulas/physics/high-school/jyp4yg7il5off4no14v8qlwjydbg1ntkew.png)
**(c) Total Flux through the Loop:**
![\[ \text{Total Flux} = \int_(0)^(b) \left((\mu_0 \cdot i)/(2\pi \cdot r)\right) \cdot (a \, dx) \]\[ \text{Total Flux} = \int_(0)^{0.36 \, \text{m}} \left(\frac{(4\pi * 10^(-7) \, \text{T m/A}) \cdot i}{2\pi \cdot r}\right) \cdot (0.12 \, \text{m} \, dx) \]](https://img.qammunity.org/2024/formulas/physics/high-school/8kz83k4doa04xilejtzvefx4q3opnhg5yu.png)
**(d) Induced EMF
in the Loop:**
![\[ \varepsilon = -(d)/(dt) \left( \int_(0)^(b) B \cdot (a \, dx) \right) \]\[ \varepsilon = -(d)/(dt) \left( \int_(0)^{0.36 \, \text{m}} \left(\frac{(4\pi * 10^(-7) \, \text{T m/A}) \cdot i}{2\pi \cdot r}\right) \cdot (0.12 \, \text{m} \, dx) \right) \]](https://img.qammunity.org/2024/formulas/physics/high-school/s3ly4rmfchbdisyjj4jy1xzrao8azti0vh.png)
Complete question:
The current in the long, straight wire AB shown in the figure is upward and is increasing steadily at a rate di/dt.
(a) At an instant when the current is i, what are the magnitude and direction of the field B at a distance r to the right of the wire?
(b) What is the magnetic flux through the narrow, shaded strip?
(c) What is the total flux through the loop?
(d) What is the induced emf in the loop?
(e) Evaluate the numerical value of the induced emf if a = 12.0 cm, b = 36.0 cm, L = 24.0 cm, and di/dt = 9.60 A/s.