114k views
5 votes
Differentiate the function.
h(x) = e^x^4+ In(x)

1 Answer

5 votes

Answer:


h'(x) = 4e^(4x) + (1)/(x)

Explanation:

Given the function:


h(x) = e^(x^4) + \ln(x)

we can find its derivative using:

  • the sum/difference rule ...
    \left[\frac{}{}f(x) \pm g(x)\frac{}{}\right]' = f'(x) \pm g'(x)
  • the chain rule ...
    \left[\frac{}{}f(x)^n\frac{}{}\right]' = n \left[\frac{}{}f(x)\frac{}{}\right]^(n\,-\,1) \cdot f'(x)
  • the common derivatives ...
    \left[\,e^x\,\right]' = e^x ...
    \left[\frac{}{}\ln(x)\frac{}{}\right]' = (1)/(x)

First, we can apply the sum/difference rule.


h(x) = e^(x^4) + \ln(x)


h'(x) = \left[\frac{}{}e^(x^4)\frac{}{}\right]' + \left[\frac{}{}\ln(x)\frac{}{}\right]'

Next, we can simplify the derivative of
\ln(x).


h'(x) = \left[\frac{}{}e^(x^4)\frac{}{}\right]' + (1)/(x)

Then, we can simplify the derivative of the first term using the chain rule.


h'(x) = \left[\frac{}{}4\,[\,e^x\,]^((4\, -\, 1))\cdot e^x\frac{}{}\right] + (1)/(x)

Finally, this can be simplified using the properties of exponents.


\boxed{h'(x) = 4e^(4x) + (1)/(x)}

User Chesley
by
8.1k points

No related questions found