110k views
3 votes
How can the logarithmic expression be rewritten?

Select True or False for each statement.

How can the logarithmic expression be rewritten? Select True or False for each statement-example-1

1 Answer

7 votes

Answer:

True

False

True

Explanation:

Use log laws to simplify the left side of each equation.


\boxed{\begin{minipage}{8cm}\underline{Log laws}\\\\Product law:\quad\:$\log_axy=\log_ax + \log_ay$\\\\Quotient law:\;\;\;$\log_a \left((x)/(y)\right)=\log_ax - \log_ay$\\\\Power law:\quad\;\;\;\:$\log_ax^n=n\log_ax$\\\end{minipage}}

Given logarithmic statement:


\log_3v-\log_3w-\log_3x=\log\left((v)/(wx)\right)

Apply the quotient law for logarithms:


\begin{aligned}\log_3v-\log_3w-\log_3x&=\log_3\left((v)/(w)\right)-\log_3x\\\\&=\log_3\left(((v)/(w))/(x)\right)\\\\&=\log\left((v)/(wx)\right)\end{aligned}

Therefore, the given statement is true.


\hrulefill

Given logarithmic statement:


3\log_4n+\log_4m=\log_4(nm)^3

Apply the power law and the product law for logarithms:


\begin{aligned}3\log_4n+\log_4m&=\log_4n^3+\log_4m\\\\&=\log_4(n^3 \cdot m)\\\\&=\log_4n^3m\end{aligned}

Therefore, the given statement is false.


\hrulefill

Given logarithmic statement:


\log_2\left(\frac{c\sqrt[3]{d}}{e^4}\right)=\log_2c+(1)/(3)\log_2d-4\log_2e

Apply the quotient law, the product law, and the power law for logarithms:


\begin{aligned}\log_2\left(\frac{c\sqrt[3]{d}}{e^4}\right)&=\log_2\left(c\sqrt[3]{d}\right) - \log _2\left(e^4\right)\\\\&=\log_2\left(c\right)+\log_2\left(\sqrt[3]{d}\right)-\log _2(e^4)\\\\&=\log_2\left(c\right)+\log_2\left(d^{(1)/(3)}\right)- \log _2(e^4)\\\\&=\log_2c+(1)/(3)\log_2d-4\log_2e\end{aligned}

Therefore, the given statement is true.

User Zmilan
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.