Answer:
True
False
True
Explanation:
Use log laws to simplify the left side of each equation.

Given logarithmic statement:

Apply the quotient law for logarithms:

Therefore, the given statement is true.

Given logarithmic statement:

Apply the power law and the product law for logarithms:

Therefore, the given statement is false.

Given logarithmic statement:
![\log_2\left(\frac{c\sqrt[3]{d}}{e^4}\right)=\log_2c+(1)/(3)\log_2d-4\log_2e](https://img.qammunity.org/2024/formulas/mathematics/college/g8vcjsarhhfzm3zint565jqzm1cb48zt5v.png)
Apply the quotient law, the product law, and the power law for logarithms:
![\begin{aligned}\log_2\left(\frac{c\sqrt[3]{d}}{e^4}\right)&=\log_2\left(c\sqrt[3]{d}\right) - \log _2\left(e^4\right)\\\\&=\log_2\left(c\right)+\log_2\left(\sqrt[3]{d}\right)-\log _2(e^4)\\\\&=\log_2\left(c\right)+\log_2\left(d^{(1)/(3)}\right)- \log _2(e^4)\\\\&=\log_2c+(1)/(3)\log_2d-4\log_2e\end{aligned}](https://img.qammunity.org/2024/formulas/mathematics/college/p9eyx1xjb6512u3jyv91fqak0wem35vfjs.png)
Therefore, the given statement is true.