108k views
5 votes
Integration of (e^(5*x)+e^(3*x))/(e^x+e^ -x) give step by step explanation

1 Answer

3 votes

Explanation:


\displaystyle \\\int(e^(5x)+e^(3x))/(e^x+e^(-x))dx=\int(e^(3x)*(e^(2x)+1))/(e^x+(1)/(e^x) ) dx=\int(e^(3x)*(e^(2x)-1))/((e^(2x)+1)/(e^x) ) dx=\\\\\\=\int(e^(3x)*(e^(2x)+1)*e^x)/(e^(2x)+1) dx=\int e^(4x)dx.\\


\displaystyle \\Substitution:\\\\4x=u\ \ \ \ \ \ \Rightarrow\ \ \ \ \ \ x=(u)/(4) \ \ \ \ \ \ dx=(du)/(4) \\\\Hence\ \ \ \ \int e^u(du)/(4) =\int(e^u)/(4) du=(1)/(4) \int e^udu=(e^u)/(4)+C=(e^(4x))/(4) +C.

User Amila De Silva
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.