192k views
0 votes
a 5.0-kg cart is moving horizontally at 6.0m/s. In order to change its speed to 10.0m/s, the net work done on the cart must be: 160J, 400J, 40J, 550J, 90J

1 Answer

7 votes

Here we go ~

Formulae to be used here are :


\quad\displaystyle \circ \: \rm kinetic \: \: energy = ( 1 )/(2) m {v}^(2)


\quad\displaystyle \circ \rm \: work \: done = change \: \: in \: \: KE

The kinetic energy of cart while moving with velocity 6.0m/s can be calculated as :


\qquad\displaystyle \tt \dashrightarrow \: (1)/(2) (5)(6) {}^(2)


\qquad\displaystyle \tt \dashrightarrow \: (1)/(2) (5)(36)

Similarly, kinetic energy at velocity 10.0m/s would be :


\qquad\displaystyle \tt \dashrightarrow \: (1)/(2) (5)(10 {}^{} ) {}^(2)


\qquad\displaystyle \tt \dashrightarrow \: (1)/(2) (5)(100)

Next up ;


\qquad\displaystyle \tt \dashrightarrow \: work \: done = KE_(final) - KE_(initial)


\qquad\displaystyle \tt \dashrightarrow \: WD = (1)/(2) (5)(100) - (1)/(2) (5)(36)


\qquad\displaystyle \tt \dashrightarrow \: WD = (1)/(2) (5)(100 - 36)


\qquad\displaystyle \tt \dashrightarrow \: WD = (1)/(2) (5)(64)


\qquad\displaystyle \tt \dashrightarrow \: WD = 5 * 32


\qquad\displaystyle \tt \dashrightarrow \: WD = 160 \: \: joules

That's our required answer, n matches with choice A.) 160 J

User Corradolab
by
7.8k points