32.0k views
3 votes
Question 7(Multiple Choice Worth 1 points)

(08.02 MC)
Which of the following reveals the minimum value for the equation 2x² + 12x-14=0?
02(x+6)² = 26
02(x+6)² = 20
02(x+3)²=32

User Sewa
by
8.7k points

1 Answer

4 votes

Answer:

B. 02(x+6)2 = 20

Explanation:

The minimum value for the equation 2x2 + 12x - 14 = 0 can be found by completing the square.

To complete the square for a quadratic equation in the form ax2 + bx + c, we first need to divide both sides of the equation by the coefficient of x2, which is 2 in this case. This gives us:

x2 + 6x - 7 = 0

Now to complete the square, we calculate half the coefficient of x, which is 6/2 = 3. We then square this value and add it to both sides:

x2 + 6x - 7 + 9= 9

(x + 3)2 = 2

Factoring the left side gives us:

2(x + 3)2 = 20

We can now set (x + 3)2 equal to 0 to find the minimum/maximum values:

(x + 3)2 = 0

x + 3 = 0

x = -3

Therefore, the value of x that minimizes 2x2 + 12x - 14 is -3.

Of the given options, only Option B reveals this minimum value

User Ashish Chaugule
by
7.4k points

No related questions found