141k views
0 votes
Find the distance between point k and L point .

i would try but i feel like ima be wrong :'/

Find the distance between point k and L point . i would try but i feel like ima be-example-1

2 Answers

4 votes

Answer:

Explanation:

Just count, from -3 to 3 is 6

or you can use the distance formula

d = √((x2-x1)2 + (y2-y1)2)

= √((3--3)2 + (4-4)2)

= √((6)2

= √36

= 6

User Georgeawg
by
8.3k points
1 vote

GiveN:-

  • K = (-3 ,4)
  • L = (3, 4)

To finD :-

  • Distance Between KL = ??

SolutioN:-

To find the distance between two given points, we can use distance Formula...


\bigstar \: { \underline{ \overline{ \boxed{ \frak{Distance= \sqrt{{(x_(2) - x_(1)) }^(2) +{(y_(2) - y_(1)) }^(2) }}}}}}

★ Let's substitute the values into the distance formula:-


{\longrightarrow \:{ \pmb{\: Distance= \sqrt{{(x_(2) - x_(1)) }^(2) +{(y_(2) - y_(1)) }^(2) }}}}


{\longrightarrow \:{ \pmb{\: KL= \sqrt{{( 3-( - 3)) }^(2) +{(4-4) }^(2) }}}}


{\longrightarrow \:{ \pmb{\: KL= \sqrt{{( 3 + 3) }^(2) +{(4-4) }^(2) }}}}


{\longrightarrow \:{ \pmb{\: KL= \sqrt{{( 3 + 3) }^(2) +{(0) }^(2) }}}}


{\longrightarrow \:{ \pmb{\: KL= \sqrt{{( 3 + 3) }^(2) }}}}


{\longrightarrow \:{ \pmb{\: KL= \sqrt{{(6 )}^(2) }}}}


{\longrightarrow \:{ \pmb{\: KL= √(36 )}}}


{\longrightarrow \:{ \pmb{\: KL= √(6 * 6 )}}}


{\longrightarrow \:{ \pmb{\: KL= 6 \: units}}}

Therefore, the distance between the points (-3, 4) and (3, 4) is 6 units.

User Eben
by
8.1k points

No related questions found