Answer:
(-8, 3) and (-2, -3) is y = -x - 5
Explanation:
To find the equation of a line passing through two given points, we can use the point-slope form of a linear equation:
y - y1 = m(x - x1)
Where (x1, y1) are the coordinates of one of the points on the line, and m is the slope of the line.
Given the points (-8, 3) and (-2, -3), we can calculate the slope (m) using the formula:
m = (y2 - y1) / (x2 - x1)
Substituting the coordinates into the formula:
m = (-3 - 3) / (-2 - (-8))
m = (-3 - 3) / (-2 + 8)
m = (-6) / (6)
m = -1
Now that we have the slope (m = -1) and one of the points (x1, y1) = (-8, 3), we can use the point-slope form to write the equation:
y - 3 = -1(x - (-8))
y - 3 = -1(x + 8)
y - 3 = -x - 8
y = -x - 8 + 3
y = -x - 5
Therefore, the equation that represents a line passing through the points (-8, 3) and (-2, -3) is y = -x - 5.
Hope this helped :)