198k views
1 vote

\frac{ {e}^(2x) + {e}^(x) + 1 }{ {e}^(x) } \: dx
Please help!! ​

User ZelkiN
by
8.4k points

2 Answers

3 votes

Answer:

(look at the picture)

∫\frac{ {e}^(2x) + {e}^(x) + 1 }{ {e}^(x) } \: dx Please help!! ​-example-1
User Kirill Slatin
by
8.9k points
5 votes

Answer:


\boxed{\tt \:\:e^x + x - e^(-x) + C}

Explanation:

Evaluate the integral step by step:


\begin{aligned}\tt \int (e^(2x)+e^x+1)/(e^x) dx = \int \left((e^(2x))/(e^x) + (e^x)/(e^x) + (1)/(e^x)\right) dx \\\tt = \int (e^x + 1 + e^(-x)) dx.\end{aligned}

Now, we can integrate each term separately:

1. Integrating
\tt e^x:


\tt \int e^x \:dx = e^x + C_1,

where
\tt C_1is the constant of integration.

2. Integrating 1.


\tt \int 1\ dx = x + C_2,

where
\tt C_2 is another constant of integration.

3. Integrating
\tt e^(-x).


\tt \int e^(-x) \: dx = -e^(-x) + C_3,

where
\tt C_3 is a third constant of integration.

Putting it all together, we have:


\tt \int (e^(2x)+e^x+1)/(e^x) dx = \int (e^x + 1 + e^(-x)) dx \\\tt = \int e^x dx + \int 1 dx + \int e^(-x) dx \\ \tt =(e^x + C_1) + (x + C_2) + (-e^(-x) + C_3) \\\tt = e^x + x - e^(-x) + C

where
\tt C = C_1 + C_2 + C_3 is the constant of integration.

Therefore, the final solution to the integral
\tt \int (e^(2x)+e^x+1)/(e^x) dx is
\boxed{\tt \:\:e^x + x - e^(-x) + C}

User Indiajoe
by
8.3k points