220k views
2 votes
If f(x)=(x^2- 1),/(x^2 + 1), determine f'(x) and f"(x). Verificate whether your answers in (a) are reasonable by comparing the graphs of, f' and f".

User NigoroJr
by
8.6k points

1 Answer

3 votes

Answer:


f'(x) = (4x)/((x^2 + 1)^2)\\\\f''(x) = (4(-3x^2 + 1))/((x^2 + 1)^3)

Explanation:

If given:


h(x) = f(x) \cdot g(x)

then:


h'(x) = (f'(x) \cdot g(x) - f(x) \cdot g(x))/((g(x))^2)

Knowing this rule, we can use it to find the two derivatives:


f(x) = (x^2 - 1)/(x^2 + 1)\\\\\to f'(x) = (2x(x^2 + 1)-2x(x^2 - 1))/((x^2 + 1)^2)\\\\= (2x^3 + 2x - 2x^2 + 2x)/((x^2 + 1)^2)\\\\f'(x) = (4x)/((x^2 + 1)^2)\\\\\to f''(x) = (4(x^2 + 1)^2 - 2(x^2 + 1) * 2x * 4x)/((x^2 + 1)^4)\\\\= (4(x^2 + 1)^2 - 16x^2(x^2 + 1))/((x^2 + 1)^4)\\\\= (4(x^2 + 1)\left[(x^2 + 1) - 4x^2\right])/((x^2 + 1)^4)\\\\f''(x) = (4(-3x^2 + 1))/((x^2 + 1)^3)

User Buboh
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories