70.1k views
2 votes
A sculptor makes a miniature model before starting the final version. Her model is scaled so that of 1/4 of an inch corresponds to 6 feet on the final version. The base of her model is 5/12 of an inch. How big will the base of the final be?

User Justin Lee
by
8.1k points

1 Answer

6 votes

Answer:

10 feet

Explanation:

To find out the size of the base of the final version, we need to determine the scaling factor between the model and the final version.

Given that 1/4 of an inch on the model corresponds to 6 feet on the final version, we can set up the following proportion:


(1/4 \ in)/( 6 \ ft) = ( 5/12 \ in )/( x )

To solve for x, we cross-multiply:


\Longrightarrow (1/4 \ in)(x)= (5/12 \ in)(6 \ ft)

Now, let's simplify the equation:


\Longrightarrow \Big((1)/(4) \ in\Big)(x )= \Big(\frac52 \ ft \cdot in\Big)

To eliminate the fraction, we can multiply both sides of the equation by 4:


\Longrightarrow \Big((1)/(4) \ in\Big)(x)= \Big(\frac52 \ ft \cdot in\Big)\\\\\\\\\Longrightarrow x= \Big(\frac52 \ ft \cdot in\Big)\Big(4 \ in^(-1) \Big)\\\\\\\\\therefore \boxed{\boxed{x=10 \ ft}}

Therefore, the base of the final version will be 10 feet.

User TheShun
by
8.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories