120k views
4 votes
Use the given conditions to find the exact values of sin(2u), cos(2u), and tan(2u) using the double-angle formulas.

sin(u) = -3/5, 3π/2 < u < 2π
sin(2u) =
cos(2u) =
tan(2u)

User Shsteimer
by
7.6k points

1 Answer

6 votes

Answer:


\sin(2u)=-(24)/(25)


\cos(2u)=(7)/(25)


\tan(2u)=-(24)/(7)

Explanation:

Given sin(u) = -3/5, use the trigonometric identity sin²θ + cos²θ = 1 to find cos(u):


\begin{aligned}\sin^2(u)+\cos^2(u)&amp;=1\\\\\left(-(3)/(5)\right)^2+\cos^2(u)&amp;=1\\\\(9)/(25)+\cos^2(u)&amp;=1\\\\\cos^2(u)&amp;=1-(9)/(25)\\\\\cos^2(u)&amp;=(16)/(25)\\\\\cos(u)&amp;=(4)/(5)\end{aligned}

As u is in the interval 3π/2 < u < 2π, the angle is in quadrant IV of the unit circle. In quadrant IV, cos is positive and sin is negative. Therefore:


\sin(u)=-(3)/(5) \qquad \cos(u)=(4)/(5)

Calculate tan(u) by using the identity tanθ = sinθ/cosθ:


\tan(u)=(-(3)/(5))/((4)/(5))=-(3)/(4)


\boxed{\begin{minipage}{5 cm}\underline{Double Angle Identities}\\\\$\sin (2\theta)=2\sin \theta \cos \theta $\\\\$\cos (2\theta)=\cos^2\theta-\sin^2\theta$\\\\$\tan (2\theta)=(2\tan\theta)/(1 -\tan^2\theta)$\\\end{minipage}}

Use the double angle identities to find sin(2u), cos(2u) and tan(2u).


\hrulefill


\begin{aligned}\sin (2u)&amp;=2\sin u \cos u\\\\&amp;=2\left(-(3)/(5)\right) \left((4)/(5)\right)\\\\&amp;=-(24)/(25)\end{aligned}


\hrulefill


\begin{aligned}\cos (2u)&amp;=\cos^2u - \sin^2u\\\\&amp;=\left((4)/(5)\right)^2-\left(-(3)/(5)\right)^2\\\\&amp;=(16)/(25)-(9)/(25)\\\\&amp;=(7)/(25)\end{aligned}


\hrulefill


\begin{aligned}\tan (2u)&amp;=(2\tan(u))/(1 -\tan^2(u))\\\\&amp;=(2\left(-(3)/(4)\right))/(1 -\left(-(3)/(4)\right)^2)\\\\&amp;=(-(3)/(2))/(1 -(9)/(16))\\\\&amp;=(-(3)/(2))/((7)/(16))\\\\&amp;=-(3)/(2) \cdot (16)/(7)\\\\&amp;=-(48)/(14)\\\\&amp;=-(48/2)/(14/2)\\\\&amp;=-(24)/(7)\end{aligned}

User Wascar
by
8.2k points