Answer:
y = -8/3x + 8
Explanation:
Step 1: Identify which values we have and need to find in the slope-intercept form:
The general equation of the slope-intercept form of a line is given by:
y = mx + b, where
- (x, y) is any point,
- m is the slope,
- and b is the y-intercept.
Since we're told that the y-intercept is 8, this is our b value in the slope-intercept form.
Step 2: Find m, the slope of the line:
- Since the x-intercept is 3, the entire coordinates of the x-intercept are (3, 0)
Thus, we can find m, the slope of the line by plugging in (3, 0) for (x, y) and 8 for b:
0 = m(3) + 8
0 = 3m + 8
-8 = 3m
-8/3 = m
Thus, the slope is -8/3.
Therefore, the the equation of the line in slope-intercept form whose x-intercept is 3 and whose y-intercept is 8 is y = -8/3x + 8.
Optional Step 3: Check the validity of the answer:
- We know that the entire coordinates of the x-intercept are (3, 0) and the entire coordinates of the y-intercept are (0, 8).
Thus, we can check that we've found the correct equation in slope-intercept form by plugging in (3, 0) and (0, 8) for (x, y), -8/3 for m, and 8 for b and seeing if we get the same answer on both sides of the equation when simplifying:
Plugging in (3, 0) for (x, y) along with -8/3 for m and 8 for b:
0 = -8/3(3) + 8
0 = -24/3 + 8
0 = -8 = 8
0 = 0
Plugging in (0, 8) for (x, y) along with -8/3 for m and 8 for b;
8 = -8/3(0) + 8
8 = 0 + 8
8 = 8
Thus, the equation we've found is correct as it contains the points (3, 0) and (0, 8), which are the x and y intercepts.