212k views
1 vote
What are the roots of x in -10x^2+12x-9=0

User Rinaldi
by
7.4k points

2 Answers

3 votes

Answer:

Roots of x.


\boxed{\boxed{\tt x = (6 - 3√(-6))/(10)} \: \tt \:and \: \boxed{\tt x = (6 + 3√(-6))/(10)}}

Explanation:

The roots of any equation can be found using the quadratic equation formula:


\boxed{\boxed{\tt x = (-b \pm √(b^2 - 4ac))/(2a)}}

For the question:


\tt -10x^2+12x-9=0 comparing this equation with
\tt ax^2+bx+c=0

we get,

a = -10, b = 12, and c = -9.

Substituting these values into the formula, we get:


\tt x = (-12 \pm √(12^2 - 4 * -10 * -9))/(2 * -10)


\tt x = (-12 \pm √(-216))/(-20)


\tt x = (-12 \pm 6√(-6))/(-20)

The roots of the equation are:

Taking Positive:


\tt x = (-12 + 6√(-6))/(-20)


\tt x = (-2*(6 - 3√(-6)))/(-20)


\tt x = (6 - 3√(-6))/(10)

Taking Negative:


\tt x = (-12 - 6√(-6))/(-20)


\tt x = (-2*(6 + 3√(-6)))/(-20)


\tt x = (6 + 3√(-6))/(10)

Therefore, Roots are:
\boxed{\tt x = (6 - 3√(-6))/(10)} \: \tt \:and \: \boxed{\tt x = (6 + 3√(-6))/(10)}

User StackAttack
by
8.1k points
3 votes

Answer:


x=(6 - 3√(6)\:i)/(10),\quad x=(6 +3√(6)\:i)/(10)

Explanation:

To find the roots of a quadratic equation in the form ax² + bx + c = 0, use the quadratic formula.


\boxed{\begin{minipage}{5cm}\underline{Quadratic Formula}\\\\$x=(-b \pm √(b^2-4ac))/(2a)$\\\\when $ax^2+bx+c=0$ \\\end{minipage}}

Compare the coefficients of the given quadratic equation -10x² + 12x - 9 = 0 to ax² + bx + c = 0:

  • a = -10
  • b = 12
  • c = -9

Substitute the values of a, b and c into the quadratic formula:


x=(-12 \pm √((12)^2-4(-10)(-9)))/(2(-10))

Simplify:


x=(-12 \pm √(144-360))/(-20)


x=(12 \pm √(-216))/(20)

Rewrite -216 as 6² · 6 · (-1):


x=(12 \pm √(6^2 \cdot 6 \cdot (-1)))/(20)


\textsf{Apply the radical rule:} \quad √(ab)=√(a)√(b)


x=(12 \pm √(6^2) √(6) √(-1))/(20)


\textsf{Apply the radical rule:} \quad √(a^2)=a, \quad a \geq 0


x=(12 \pm 6√(6) √(-1))/(20)


\textsf{Apply\;the\;imaginary\;number\;rule:}\quad √(-1)=i


x=(12 \pm 6√(6)\:i)/(20)

Divide by 2:


x=(6 \pm 3√(6)\:i)/(10)

Therefore, the roots of the given quadratic equation are:


\boxed{\boxed{x=(6 - 3√(6)\:i)/(10),\quad x=(6 +3√(6)\:i)/(10)}}

User Mestica
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories