212k views
1 vote
What are the roots of x in -10x^2+12x-9=0

User Rinaldi
by
7.4k points

2 Answers

3 votes

Answer:

Roots of x.


\boxed{\boxed{\tt x = (6 - 3√(-6))/(10)} \: \tt \:and \: \boxed{\tt x = (6 + 3√(-6))/(10)}}

Explanation:

The roots of any equation can be found using the quadratic equation formula:


\boxed{\boxed{\tt x = (-b \pm √(b^2 - 4ac))/(2a)}}

For the question:


\tt -10x^2+12x-9=0 comparing this equation with
\tt ax^2+bx+c=0

we get,

a = -10, b = 12, and c = -9.

Substituting these values into the formula, we get:


\tt x = (-12 \pm √(12^2 - 4 * -10 * -9))/(2 * -10)


\tt x = (-12 \pm √(-216))/(-20)


\tt x = (-12 \pm 6√(-6))/(-20)

The roots of the equation are:

Taking Positive:


\tt x = (-12 + 6√(-6))/(-20)


\tt x = (-2*(6 - 3√(-6)))/(-20)


\tt x = (6 - 3√(-6))/(10)

Taking Negative:


\tt x = (-12 - 6√(-6))/(-20)


\tt x = (-2*(6 + 3√(-6)))/(-20)


\tt x = (6 + 3√(-6))/(10)

Therefore, Roots are:
\boxed{\tt x = (6 - 3√(-6))/(10)} \: \tt \:and \: \boxed{\tt x = (6 + 3√(-6))/(10)}

User StackAttack
by
8.1k points
3 votes

Answer:


x=(6 - 3√(6)\:i)/(10),\quad x=(6 +3√(6)\:i)/(10)

Explanation:

To find the roots of a quadratic equation in the form ax² + bx + c = 0, use the quadratic formula.


\boxed{\begin{minipage}{5cm}\underline{Quadratic Formula}\\\\$x=(-b \pm √(b^2-4ac))/(2a)$\\\\when $ax^2+bx+c=0$ \\\end{minipage}}

Compare the coefficients of the given quadratic equation -10x² + 12x - 9 = 0 to ax² + bx + c = 0:

  • a = -10
  • b = 12
  • c = -9

Substitute the values of a, b and c into the quadratic formula:


x=(-12 \pm √((12)^2-4(-10)(-9)))/(2(-10))

Simplify:


x=(-12 \pm √(144-360))/(-20)


x=(12 \pm √(-216))/(20)

Rewrite -216 as 6² · 6 · (-1):


x=(12 \pm √(6^2 \cdot 6 \cdot (-1)))/(20)


\textsf{Apply the radical rule:} \quad √(ab)=√(a)√(b)


x=(12 \pm √(6^2) √(6) √(-1))/(20)


\textsf{Apply the radical rule:} \quad √(a^2)=a, \quad a \geq 0


x=(12 \pm 6√(6) √(-1))/(20)


\textsf{Apply\;the\;imaginary\;number\;rule:}\quad √(-1)=i


x=(12 \pm 6√(6)\:i)/(20)

Divide by 2:


x=(6 \pm 3√(6)\:i)/(10)

Therefore, the roots of the given quadratic equation are:


\boxed{\boxed{x=(6 - 3√(6)\:i)/(10),\quad x=(6 +3√(6)\:i)/(10)}}

User Mestica
by
7.6k points

No related questions found