88.9k views
5 votes
Complete the square to make a perfect square trinomial. Then, write the result as a binomial squared.

n2−6n

1 Answer

4 votes


\sf{\blue{«} \: \pink{ \large{ \underline{A\orange{N} \red{S} \green{W} \purple{E} \pink{{R}}}}}}

Given expression:
\displaystyle\sf n^(2) -6n

1. Take half of the coefficient of the linear term:

Half of
\displaystyle\sf -6n is
\displaystyle\sf -(6)/(2) = -3.

2. Square the result obtained in step 1:

Squaring
\displaystyle\sf -3 gives
\displaystyle\sf (-3)^(2) = 9.

3. Add the value obtained in step 2 to the original expression:


\displaystyle\sf n^(2) -6n +9

The result can be written as a binomial squared:


\displaystyle\sf ( n-3)^(2)


\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}

♥️
\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}

User Matheus Hatje
by
8.7k points

No related questions found