- Answer: The Value of: a^2 + b^2 = 18
Hence, The Value of: a^2 + b^2 is 18
- Step-by-step explanation: √
- Find the RECIPROCAL of: a
b = 1/a = 1/ 2 + √5
- Rationalize the Denominator:
b = 1/2 + √5 * 2 - √5/2 - √5
= 2 - √5/1
b = 2 - √5
a^2 = (2 + √5)^2 = 4 + 4√5 + 5
b^2 = (2 - √5)^2 = 4 - 4√5 + 5
a^2 + b^2 = 4 + 4√5 + 5 + 4 - 4√5 + 5
= 18 - 3√5
- So, Now we solve the Inverse property of addition: ±
4 + 5 + 4 + 5
9 + 4 + 5
13 + 5 = 18
- Move the expression to the right:
a^2 + b^2 = 18
a^2 = 18 - b^2
- Now we take the root of both sides/Negative/Positive:
a = ± √18 - b^2
a = √18 - b^2
a = -√18 - b^2
Hence, The Value of: a^2 + b^2 is 18
I hope this helps you!