Answer:
Refer to the step-by-step Explanation.
Explanation:
Simplify the equation with given substitutions,
Given Equation:

Given Substitutions:


Start by substituting in the appropriate values:
![mgh+(1/2)mv^2+(1/2)I \omega^2=(1/2)mv_{_(0)}^2+(1/2)I \omega_{_(0)}^2 \\\\\\\\\Longrightarrow mgh+(1/2)mv^2+(1/2)\bold{[(2/5)mR^2]} \bold{[v/R]}^2=(1/2)mv_{_(0)}^2+(1/2)\bold{[(2/5)mR^2]}\bold{[v_{_(0)}/R]}^2](https://img.qammunity.org/2024/formulas/physics/college/6uiuan8n8o4akezu1fpeu7kbf9okel9opu.png)
Adjusting the equation so it easier to work with.
![\Longrightarrow mgh+(1)/(2) mv^2+(1)/(2) \Big[(2)/(5) mR^2\Big]\Big[(v)/(R) \Big]^2=\frac12mv_{_(0)}^2+\frac12\Big[\frac25mR^2\Big]\Big[\frac{v_{_(0)}}{R}\Big]^2](https://img.qammunity.org/2024/formulas/physics/college/xd5m8da7qed5yh1539g0tuab3kt93z552y.png)

Simplifying the left-hand side of the equation:
![mgh+(1)/(2) mv^2+(1)/(2) \Big[(2)/(5) mR^2\Big]\Big[(v)/(R) \Big]^2](https://img.qammunity.org/2024/formulas/physics/college/7bmf1yc219228s2jyud0kik96lrmrovtaw.png)
Simplifying the third term.
![\Longrightarrow mgh+(1)/(2) mv^2+(1)/(2) \Big[(2)/(5) mR^2\Big]\Big[(v)/(R) \Big]^2\\\\\\\\\Longrightarrow mgh+(1)/(2) mv^2+(1)/(2)\cdot (2)/(5) \Big[mR^2\Big]\Big[(v)/(R) \Big]^2\\\\\\\\\Longrightarrow mgh+(1)/(2) mv^2+(1)/(5) \Big[mR^2\Big]\Big[(v)/(R) \Big]^2](https://img.qammunity.org/2024/formulas/physics/college/7w6kydnqsr9k0ijie6h0ks2on6h2351rae.png)

![\Longrightarrow mgh+(1)/(2) mv^2+(1)/(5) \Big[mR^2\Big]\Big[(v^2)/(R^2) \Big]\\\\\\\\\Longrightarrow mgh+(1)/(2) mv^2+(1)/(5) \Big[mR^2 \cdot(v^2)/(R^2) \Big]](https://img.qammunity.org/2024/formulas/physics/college/hkarjhcoi5j9q2dwtrt4avtk54c98cqi3n.png)
"R²'s" cancel, we are left with:
![\Longrightarrow mgh+(1)/(2) mv^2+(1)/(5) \Big[mR^2\Big]\Big[(v^2)/(R^2) \Big]\\\\\\\\\Longrightarrow mgh+(1)/(2) mv^2+(1)/(5)mv^2](https://img.qammunity.org/2024/formulas/physics/college/b12loy1p5tmn6exgsjgxiu57pc2o5qigr3.png)
We have like terms, combine them.
![\Longrightarrow mgh+(1)/(2) mv^2+(1)/(5) \Big[mR^2\Big]\Big[(v^2)/(R^2) \Big]\\\\\\\\\Longrightarrow mgh+(7)/(10) mv^2](https://img.qammunity.org/2024/formulas/physics/college/zdwd1do0xd1zjzuq8h69vl7lfrregck1s1.png)
Each term has an "m" in common, factor it out.

Now we have the following equation:
![\Longrightarrow m(gh+(7)/(10)v^2)=\frac12mv_{_(0)}^2+\frac12\Big[\frac25mR^2\Big]\Big[\frac{v_{_(0)}}{R}\Big]^2](https://img.qammunity.org/2024/formulas/physics/college/pzv5jsqblrnecqyl2gpwac13nqxgn6wlfx.png)

Simplifying the right-hand side of the equation:
![\Longrightarrow \frac12mv_{_(0)}^2+\frac12\cdot\frac25\Big[mR^2\Big]\Big[\frac{v_{_(0)}}{R}\Big]^2\\\\\\\\\Longrightarrow \frac12mv_{_(0)}^2+\frac15\Big[mR^2\Big]\Big[\frac{v_{_(0)}}{R}\Big]^2\\\\\\\\\Longrightarrow \frac12mv_{_(0)}^2+\frac15\Big[mR^2\Big]\Big[\frac{v_{_(0)}^2}{R^2}\Big]\\\\\\\\\Longrightarrow \frac12mv_{_(0)}^2+\frac15\Big[mR^2\cdot\frac{v_{_(0)}^2}{R^2}\Big]\\\\\\\\\Longrightarrow \frac12mv_{_(0)}^2+\frac15mv_{_(0)}^2\Big\\\\\\\\](https://img.qammunity.org/2024/formulas/physics/college/b96x5n46xj2fosfgg4e5mekxlzlwtrbhyl.png)

Now we have the equation:


Now solving the equation for the variable "v":

Dividing each side by "m," this will cancel the "m" variable on each side.

Subtract the term "gh" from either side of the equation.

Multiply each side of the equation by "10/7."

Now squaring both sides.

Thus, the simplified equation above matches the simplified equation that was given.