Answer:
Explanation:
2 sin 2θ-3sinθa=0
2(2sinθcosθ)-3sinθa=0
4sinθcosθ-3sinθa=0
We are taking 2 as identity.
After this, we need to factorize
4sinθcosθ-3sinθa=0
sinθ(4cosθ-3a)=0
Either sinθ=0 or 4cosθ-3a=0:
If sinθ=0, then θ=0 or θ=180°.
If 4cosθ-3a=0, then cosθ=3a/4.
The solutions in the interval 0≤θ<2π are θ=30° and θ=150°.
Therefore, the solutions to the equation are θ=0°, θ=180°, θ=30°, and θ=150°.