Answer:
A: the probability that a 1 is received is 0.56.
B: the probability that a 0 was sent given that a 1 is received is (2/25) * (1 - P(0 sent)).
Explanation:
To solve this problem, we can use conditional probabilities and the concept of Bayes' theorem.
a. To find the probability that a 1 is received, we need to consider the two possibilities: either a 1 was sent and remained unchanged, or a 0 was sent and got flipped to a 1 by the random error.
Let's denote:
P(1 sent) = 0.6 (probability a 1 is sent)
P(0→1) = 0.2 (probability a 0 is flipped to 1)
P(1 received) = ?
P(1 received) = P(1 sent and unchanged) + P(0 sent and flipped to 1)
= P(1 sent) * (1 - P(0→1)) + P(0 sent) * P(0→1)
= 0.6 * (1 - 0.2) + 0.4 * 0.2
= 0.6 * 0.8 + 0.4 * 0.2
= 0.48 + 0.08
= 0.56
Therefore, the probability that a 1 is received is 0.56.
b. If a 1 is received, we want to find the probability that a 0 was sent. We can use Bayes' theorem to calculate this.
Let's denote:
P(0 sent) = ?
P(1 received) = 0.56
We know that P(0 sent) + P(1 sent) = 1 (since either a 0 or a 1 is sent).
Using Bayes' theorem:
P(0 sent | 1 received) = (P(1 received | 0 sent) * P(0 sent)) / P(1 received)
P(1 received | 0 sent) = P(0 sent and flipped to 1) = 0.4 * 0.2 = 0.08
P(0 sent | 1 received) = (0.08 * P(0 sent)) / 0.56
Since P(0 sent) + P(1 sent) = 1, we can substitute 1 - P(0 sent) for P(1 sent):
P(0 sent | 1 received) = (0.08 * (1 - P(0 sent))) / 0.56
Simplifying:
P(0 sent | 1 received) = 0.08 * (1 - P(0 sent)) / 0.56
= 0.08 * (1 - P(0 sent)) * (1 / 0.56)
= 0.08 * (1 - P(0 sent)) * (25/14)
= (2/25) * (1 - P(0 sent))
Therefore, the probability that a 0 was sent given that a 1 is received is (2/25) * (1 - P(0 sent)).