Answer:


Explanation:
Given the following function.

Find the following:

Taking the first derivative of h(x). We will use the chain rule and the rule for tangent.
![\boxed{\left\begin{array}{ccc}\text{\underline{The Chain Rule:}}\\\\(d)/(dx)[f(g(x))]=f'(g(x)) \cdot g'(x) \end{array}\right}\\\\\\\boxed{\left\begin{array}{ccc}\text{\underline{The Tangent Rule:}}\\\\(d)/(dx)[\tan(x)]=\sec^2(x) \end{array}\right}](https://img.qammunity.org/2024/formulas/mathematics/college/q0bmte2ol2s8lzp1aum77uha4tqvi5pyyx.png)

Now plugging in x=1:

Taking the second derivative of h(x). Using the chain rule again and the secant rule.
![\boxed{\left\begin{array}{ccc}\text{\underline{The Secant Rule:}}\\\\(d)/(dx)[\sec(x)]=\sec(x) \tan(x) \end{array}\right}](https://img.qammunity.org/2024/formulas/mathematics/college/706e8wnwwo4v9om07jkbk861ow7z8k5jsg.png)

Now plugging in x=1:

Thus, the problem is solved.