Answer:
22 - x - 30)
Explanation:
) 30 + x - 2^2 can be rewritten as: 30 + x - 4 = 26 + (x - 30) = -(30 - x) + 26 = -(x - 22) - 4 = -(22 - x) - 4 Therefore, 30 + x - 2^2 can be rewritten as - (. b) Using the result obtained in part (a): 30 + x - x^2 = 30 + x - x^2 + 22 - x - 30 - 22 + x + 30 = -(x^2 - x - 30) - (22 - x - 30) = -(x^2 - x - 30) - (-x - 8) = -(x - 6)(x + 5) - (-x - 8) = (x - 6)(-x - 5) + (x + 8) = (x - 6)(-x - 5) + 8 + 5(x - 6) = (x - 6)(5 - x) + 5(2 - x) = (x - 6)(x - 5) - 5(x - 2) Hence, the fully factorised form of the quadratic expression 30 + x - x^2 is (x - 6)(x - 5) - 5(x - 2