193k views
2 votes
Please help me asap I am stuck

Please help me asap I am stuck-example-1
User Brianestey
by
7.6k points

2 Answers

3 votes

Answer:

false

Explanation:

A ⊆ B if every element in A is in B

For the question,

A = {4, 5, 6, 7}

B = {4, 5}

Since all the elements in A are not in B

A
\\subseteq B

Therefore the statement is false

User Kishan Maurya
by
8.1k points
3 votes

Answer:

The statement is false.

Explanation:

The symbol ⊆ is used in set theory to represent the subset relationship.

The notation A ⊆ B signifies that set A is a subset of set B, indicating that every element of set A is also present in set B.

The given statement {4, 5, 6, 7} ⊆ {4, 5} states that the numbers in the first set are also present in the second set.

The statement is false, as the first set {4, 5, 6, 7} contains the numbers 6 and 7 that are not present in the second set {4, 5}. Therefore, {4, 5, 6, 7} is not a subset of {4, 5}, and the statement is false.

User Hoangfin
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.