70.1k views
4 votes
Emily rented a truck to move her belongings from her old apartment to her new apartment. The company charges a flat rental fee of $21.50 with an additional $0.50 for each mile driven. If the total cost was at most $121, how far did Emily drive to move her belongings to her new apartment?

A.
at least 199 miles
B.
at most 199 miles
C.
at least 60.5 miles
D.
at most 242 miles

User KoemsieLy
by
8.3k points

2 Answers

4 votes
To solve this problem, we can use the given information to set up an equation. Let's assume Emily drove x miles.

The cost of renting the truck is $21.50, and she is charged an additional $0.50 for each mile driven. So, the total cost can be expressed as:

Total cost = $21.50 + ($0.50 * x)

According to the question, the total cost was at most $121. Therefore, we can write the inequality:

$21.50 + ($0.50 * x) ≤ $121

Now, let's solve for x:

$0.50 * x ≤ $121 - $21.50
$0.50 * x ≤ $99.50
x ≤ $99.50 / $0.50
x ≤ 199

So, Emily drove at most 199 miles. Therefore, the correct answer is B.
User Andrei Sedoi
by
8.2k points
4 votes

Answer:

B.

at most 199 miles

Explanation:

To find how many miles Emily drove, we need to use the equation

Total cost = flat fee + miles driven * cost per mile

Substituting in the numbers

121 ≥ 21.50 + m * .5

121≥ 21.50 +.50m

Subtract 21.50 from each side.

99.50 ≥ .5m

Divide each side by .5

199 ≥m

Emily drove less than or equal to 199 miles

User Vdrmrt
by
8.3k points