79.4k views
1 vote
Answer the following question

Answer the following question-example-1

1 Answer

2 votes

Answer:

Option (C), t≈33 min

Explanation:

Using Newton's law of cooling to answer the given question.

Given:


T_0=210 \ \textdegree F\\\\T_a=68 \ \textdegree F\\\\T(10)=200 \ \textdegree F

Find:


T(??)=180 \ \textdegree F\\\\\\\hrule

Newton's law of cooling is given as:


T(t)=T_a+(T_0-T_a)e^(-kt)

Substitute our know values into the equation.


\Longrightarrow T(t)=68+(210-68)e^(-kt)\\\\\\\Longrightarrow \boxed{T(t)=68+142e^(-kt)}

Now using the initial condition to solve for the value of "k."


T(t)=68+142e^(-kt); \ T(10)=200\\\\\\\Longrightarrow 200=68+142e^(-k(10))\\\\\\\Longrightarrow 132=142e^(-10k)\\\\\\\Longrightarrow (66)/(71) =e^(-10k)\\\\\\\Longrightarrow \ln\Big((66)/(71)\Big) =-10k\\\\\\\Longrightarrow k=(\ln\Big((66)/(71)\Big))/(-10) \\\\\\\therefore k \approx 0.007303

Now we have the following function,


T(t)=68+142e^(-0.007303t)

Finding the value of "t" now.


\Longrightarrow 180=68+142e^(-0.007303t)\\\\\\\Longrightarrow 112=142e^(-0.007303t)\\\\\\\Longrightarrow (56)/(71)=e^(-0.007303t)\\\\\\\Longrightarrow \ln\Big((56)/(71)\Big)=-0.007303t\\\\\\\Longrightarrow t=(\ln\Big((56)/(71)\Big))/(-0.007303) \\\\\\\therefore \boxed{\boxed{t \approx 33 \ min}}

Thus, option (C) is correct.

User Ihor Romanchenko
by
8.2k points

No related questions found