7.8k views
5 votes
Help me do this plis

Help me do this plis-example-1
User BrettRobi
by
7.7k points

1 Answer

6 votes

The angles have a measure of 58°

┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈

Given ::

  • When two lines intersect the opposite angles are called vertical angles.

  • Vertical angles have equal measures.

As stated above,,


\begin{gathered} \; :\dashrightarrow \: \tt{4x + 34 = 8x + 10} \\ \\ \end{gathered}


\begin{gathered} \; :\dashrightarrow \: \tt{4x - 8x = 10 - 34} \\ \\ \end{gathered}


\begin{gathered} \; :\dashrightarrow \: \tt{\cancel{ -} 4x = \cancel{ - }24} \\ \\ \end{gathered}


\begin{gathered} \; :\dashrightarrow \: \tt{4x = 24} \\ \\ \end{gathered}


\begin{gathered} \; :\dashrightarrow \: \tt{x = \frac{\cancel{24}}{\cancel{ \: 4}}} \\ \\ \end{gathered}


\begin{gathered} \; :\dashrightarrow \: \tt{x = 6} \\ \\ \end{gathered}

Substituting ( x ) ::


\begin{gathered} \; \diamond \: \tt{(4x + 34)^(\circ) = (4 * 6 + 34)^(\circ)} \\ \\ \end{gathered}


\begin{gathered} \; :\dashrightarrow \: \tt{(4x + 34)^(\circ) = (24 + 34)^(\circ)} \\ \\ \end{gathered}


\begin{gathered} \; :\dashrightarrow \: \underline{\boxed{\tt{(4x + 34)^(\circ) = 58^(\circ)}}} \: \pmb{\bigstar} \\ \\ \end{gathered}

As,,


\begin{gathered} \; :\dashrightarrow \: \tt{(4x + 34)^(\circ) = (8x + 10)^(\circ)} \\ \\ \end{gathered}

So ::


\begin{gathered} \; :\dashrightarrow \: \underline{\boxed{\tt{(8x + 10)^(\circ) = 58^(\circ)}}} \: \pmb{\bigstar} \\ \\ \end{gathered}


\begin{gathered} {\underline{\pmb{\rule{170pt}{10pt}}}} \end{gathered}

User Robot
by
8.5k points

No related questions found