7.8k views
5 votes
Help me do this plis

Help me do this plis-example-1
User BrettRobi
by
7.7k points

1 Answer

6 votes

The angles have a measure of 58°

┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈

Given ::

  • When two lines intersect the opposite angles are called vertical angles.

  • Vertical angles have equal measures.

As stated above,,


\begin{gathered} \; :\dashrightarrow \: \tt{4x + 34 = 8x + 10} \\ \\ \end{gathered}


\begin{gathered} \; :\dashrightarrow \: \tt{4x - 8x = 10 - 34} \\ \\ \end{gathered}


\begin{gathered} \; :\dashrightarrow \: \tt{\cancel{ -} 4x = \cancel{ - }24} \\ \\ \end{gathered}


\begin{gathered} \; :\dashrightarrow \: \tt{4x = 24} \\ \\ \end{gathered}


\begin{gathered} \; :\dashrightarrow \: \tt{x = \frac{\cancel{24}}{\cancel{ \: 4}}} \\ \\ \end{gathered}


\begin{gathered} \; :\dashrightarrow \: \tt{x = 6} \\ \\ \end{gathered}

Substituting ( x ) ::


\begin{gathered} \; \diamond \: \tt{(4x + 34)^(\circ) = (4 * 6 + 34)^(\circ)} \\ \\ \end{gathered}


\begin{gathered} \; :\dashrightarrow \: \tt{(4x + 34)^(\circ) = (24 + 34)^(\circ)} \\ \\ \end{gathered}


\begin{gathered} \; :\dashrightarrow \: \underline{\boxed{\tt{(4x + 34)^(\circ) = 58^(\circ)}}} \: \pmb{\bigstar} \\ \\ \end{gathered}

As,,


\begin{gathered} \; :\dashrightarrow \: \tt{(4x + 34)^(\circ) = (8x + 10)^(\circ)} \\ \\ \end{gathered}

So ::


\begin{gathered} \; :\dashrightarrow \: \underline{\boxed{\tt{(8x + 10)^(\circ) = 58^(\circ)}}} \: \pmb{\bigstar} \\ \\ \end{gathered}


\begin{gathered} {\underline{\pmb{\rule{170pt}{10pt}}}} \end{gathered}

User Robot
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories