4.4k views
2 votes
12 A car travels in a straight line at speed v along a horizontal road. The car moves

against a resistive force F given by the equation
F = 400+kv²
where F is in newtons, v in ms-1 and k is a constant.
At speed v = 15ms-1, the resistive force F is 1100 N.
a
Calculate, for this car:
i the power necessary to maintain the speed of 15ms-¹,
ii the total resistive force at a speed of 30 ms-¹,
iii the power required to maintain the speed of 30ms-¹.

2 Answers

4 votes
a. The power necessary to maintain the speed of 15ms^-1 can be found using the equation for power, P = Force * velocity, where P is in watts, force is in newtons and velocity is in meters per second. Substituting the values given in the question, we get:

P = (400 + k * 15²) * 15
P = (400 + 11250) * 15
P = 11650 Watts

Therefore, the power necessary to maintain the speed of 15ms^-1 is approximately 11650 Watts.

b. The total resistive force at a speed of 30ms^-1 can be found by substituting 30 for v in the force equation:

F = 400 + k * 30^2

F = 12000 N

Therefore, the total resistive force at a speed of 30ms^-1 is approximately 12000 N.

c. The power required to maintain the speed of 30ms^-1 can be found using the same equation as in part a:

P = (400 + k * 30^2) * 30
P = (1500 + 600000) * 30
P = 625000000 Watts

Therefore, the power required to maintain the speed of 30ms^-1 is approximately 625000000 Watts. This is a very large amount of power and would require a significant amount of energy to maintain.
User Jerry Tian
by
7.3k points
3 votes

Answer:

i) Power = Force * Velocity = 1100 * 15 = 16500 W = 16.5 kW(ii) Find the value of k first: F = 400 + k(15^2) k = 28/9 F = 400 +(28/9)(30^2) = 320

Step-by-step explanation:

User Akita
by
8.5k points