Answer:
The length of the sides of the rhombus JKLM is 12 units.
A rhombus is one of parallelograms. The opposite sides of a rhombus are parallel, and the opposite angles are equal. Furthermore, all of the sides of a rhombus are the same length, and the diagonals intersect at right angles.
In the problem, the sides of rhombus JKLM are:
JK = 2x + 4
JM = 3x
Since the length all of the sides of a rhombus are the same, then:
JM = JK
3x = 2x + 4
Substract both sides by 2x:
3x - 2x = 2x + 4 - 2x
x = 4
To find the length of a side, substitute x = 4 into:
JM = 3x
JM = 3(4) = 12
Hence, the length of the sides of the given rhombus is 12.
Explanation: