222k views
3 votes
the length of a rectangle is three times its width and its perimeter is 44cm. Find it's width and area​

User Pavan
by
8.0k points

2 Answers

0 votes

Answer:

Let's use the following variables to represent the length and width of the rectangle:

L = length

W = width

We know that the length is three times the width, so we can write:

L = 3W

We also know that the perimeter of a rectangle is given by:

P = 2L + 2W

We're given that the perimeter of this rectangle is 44 cm, so we can write:

44 = 2L + 2W

Now we can substitute the expression for L in terms of W:

44 = 2(3W) + 2W

Simplifying the right side:

44 = 6W + 2W

44 = 8W

Dividing both sides by 8:

W = 5.5

So the width of the rectangle is 5.5 cm. To find the length, we can use the expression we derived earlier for L in terms of W:

L = 3W = 3(5.5) = 16.5

So the length of the rectangle is 16.5 cm.

To find the area of the rectangle, we can use the formula:

A = L * W

Substituting the values we found:

A = 16.5 * 5.5 = 90.75

So the area of the rectangle is 90.75 square centimeters.

hope it helps you

User Frank Monroe
by
8.7k points
1 vote

Answer:

the width of the rectangle is 5.5 cm and its area is 90.75 cm².

Explanation:

The formula for the perimeter of a rectangle is given by:

Perimeter = 2(length + width)

44 = 2(3w + w)

Now, we can solve for the width "w" by simplifying and solving the equation:

44 = 2(4w)

44 = 8w

w = 44/8

w = 5.5 cm

Length = 3w = 3(5.5) = 16.5 cm

Area = length × width

Substituting the values, we have:

Area = 16.5 × 5.5 = 90.75 cm²

User Axeltherabbit
by
8.4k points

Related questions