94.0k views
0 votes
Find the exact value of sin(2arccos(-3/5)) .


ASAP

User Jomuller
by
7.8k points

1 Answer

7 votes

Answer:


\sin(2\arccos(-(3)/(5)))=-(24)/(25)

Explanation:

Let
\sin(2\arccos(-(3)/(5)))=\sin(2\theta)=2\sin\theta\cos\theta and
\theta=\arccos(-(3)/(5)) so that
\cos\theta=-(3)/(5). Now we'll need to find
\sin\theta having known
\cos\theta:


\displaystyle \cos\theta=\frac{\text{Adjacent}}{\text{Hypotenuse}}=(-3)/(5)\\\\\sin\theta=\frac{\text{Opposite}}{\text{Hypotenuse}}=(√(5^2-(-3)^2))/(5)=(√(25-9))/(5)=(√(16))/(5)=(4)/(5)

Therefore,
2\sin\theta\cos\theta=2((4)/(5))(-(3)/(5))=2((-12)/(25))=-(24)/(25), which makes
\sin(2\arccos(-(3)/(5)))=-(24)/(25)

User Ryan Norooz
by
8.6k points