147k views
5 votes
Find the surface area of a cylinder with a base radius of 3 ft and a height of 8 ft.

Write your answer in terms of π, and be sure to include the correct unit.

User Rfb
by
8.6k points

2 Answers

3 votes

Answer: 66π ft squared

Explanation:

to find the lateral surface area of the cylinder.
Since the equation for the lateral surface area of a cylinder is 2πrh.
When we input the given base radius of 3ft and the height of 8ft, we get the equation of LSA = 2π (3) (8) = 48π feet squared or about 150.796447372 feet squared.

to find the Total Surface Area of a cylinder with a base radius of 3ft and a height of 8ft, we would use the equation TSA = 2πrh + 2πr^2.
After plugging in our base radius and our height, we are left with the equation TSA = 2π (3) (8) + 2π(3)^2 which after solving, gives us the solution of 66π feet squared or about 207.345115137 feet squared.

User Renderbox
by
7.8k points
4 votes

Answer:

the surface area of the given cylinder is 66π square feet.

Explanation:

Given:

Base radius (r) = 3 ft

Height (h) = 8 ft

To calculate the lateral surface area of the cylinder, we use the formula:

Lateral Surface Area = 2πrh

Lateral Surface Area = 2 * π * 3 ft * 8 ft

Lateral Surface Area = 48π ft²

The base of the cylinder is a circle, and its area can be calculated using the formula:

Base Area = πr²

Base Area = π * (3 ft)²

Base Area = 9π ft²

Since the cylinder has two bases, we multiply the base area by 2 to get the total area of the bases.

Total Base Area = 2 * 9π ft²

Total Base Area = 18π ft²

To find the total surface area of the cylinder, we add the lateral surface area and the total base area:

Total Surface Area = Lateral Surface Area + Total Base Area

Total Surface Area = 48π ft² + 18π ft²

Total Surface Area = 66π ft²

User Mete Atamel
by
8.1k points

No related questions found