162k views
5 votes
N is a positive integer. Show that, for all n, (7n + 3)² - (7n - 3)² is a multiple of 84. ​

1 Answer

3 votes

Use the difference of squares rule.

a^2 - b^2 = (a-b)(a+b)

(7n+3)^2 - (7n-3)^2 = ( (7n+3)-(7n-3) )( (7n+3)+(7n-3) )

(7n+3)^2 - (7n-3)^2 = (7n+3-7n+3)(7n+3+7n-3)

(7n+3)^2 - (7n-3)^2 = (6)(14n)

(7n+3)^2 - (7n-3)^2 = (6*14)n

(7n+3)^2 - (7n-3)^2 = 84n

This proves (7n+3)^2 - (7n-3)^2 is a multiple of 84 because 84 is a factor of 84n.

User Mulgard
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories