Use the difference of squares rule.
a^2 - b^2 = (a-b)(a+b)
(7n+3)^2 - (7n-3)^2 = ( (7n+3)-(7n-3) )( (7n+3)+(7n-3) )
(7n+3)^2 - (7n-3)^2 = (7n+3-7n+3)(7n+3+7n-3)
(7n+3)^2 - (7n-3)^2 = (6)(14n)
(7n+3)^2 - (7n-3)^2 = (6*14)n
(7n+3)^2 - (7n-3)^2 = 84n
This proves (7n+3)^2 - (7n-3)^2 is a multiple of 84 because 84 is a factor of 84n.